40 - Treatment of materials; recycling, air and water treatment,
42 - Scientific, technological and industrial services, research and design
Goods & Services
Custom manufacture of equipment for the medical, micro-electronics, wire and cable, technical textile, and composite materials industries, namely, fine-wire braiding, fiber braiding, and coiling Research and development in the field of medicine, micro-electronics, wire and cable, technical textile, and composite materials industries
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
Custom manufacture of precision catheter production equipment, namely, applications that include tip forming, eye-forming, soft-tip bonding, butt welding, balloon bonding, and hole drilling
40 - Treatment of materials; recycling, air and water treatment,
42 - Scientific, technological and industrial services, research and design
Goods & Services
Custom manufacture of processing and testing equipment, namely, balloon pleating and folding, catheter lamination, thermal and laser bonding, stent loading, stent crimping, marker band swaging, heart valve crimping, mandrel straightening, radial force and catheter simulated use and torque-testing equipment Engineering services in the field of medical devices, namely, balloon pleating and folding, catheter lamination, thermal and laser bonding, stent loading, stent crimping, marker band swaging, heart valve crimping, mandrel straightening, radial force and catheter simulated use and torque-testing equipment
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
Custom manufacture of precision catheter production equipment, namely, applications that include tip forming, eye-forming, soft-tip bonding, butt welding, balloon bonding, and hole drilling
40 - Treatment of materials; recycling, air and water treatment,
42 - Scientific, technological and industrial services, research and design
Goods & Services
Custom manufacture of process and testing equipment, namely, stent crimpers, balloon blowers, pleaters and folders, catheter and stent testers, swagers, tube processors, and thermal bonders Engineering services in the field of medical devices, namely, engineering of custom process and testing equipment, namely, stent crimpers, balloon blowers, pleaters and folders, catheter and stent testers, swagers, tube processors, and thermal bonders
40 - Treatment of materials; recycling, air and water treatment,
42 - Scientific, technological and industrial services, research and design
Goods & Services
Custom manufacture of processing and testing equipment, namely, balloon pleating and folding, catheter lamination, thermal and laser bonding, stent loading, stent crimping, marker band swaging, heart valve crimping, mandrel straightening, radial force and catheter simulated use and torque-testing equipment Engineering services in the field of medical devices, namely, balloon pleating and folding, catheter lamination, thermal and laser bonding, stent loading, stent crimping, marker band swaging, heart valve crimping, mandrel straightening, radial force and catheter simulated use and torque-testing equipment
7.
Segmental crimper having individually heated crimper segments and method of using the same
A segmental crimper comprises at least three crimper segments and an actuator. The crimper segments are arranged circumferentially about a crimper axis that defines axial and radial directions. The crimper segments are movable relative to each other in a manner such that the crimper segments collectively define a variable size aperture that is aligned with the crimper axis. Each of the crimper segments comprises a radio frequency heating element. The actuator is operatively connected to the crimper segments in a manner such that movement of the actuator causes all of the crimper segments to simultaneously move relative to each other and alters the size of the aperture.
B25B 27/10 - Hand tools or bench devices, specially adapted for fitting together or separating parts or objects whether or not involving some deformation, not otherwise provided for for connecting objects by press fit or detaching same inserting fittings into hoses
A segmental crimper comprises at least three crimper segments and an actuator. The crimper segments are arranged circumferentially about a crimper axis that defines axial and radial directions. The crimper segments are movable relative to each other in a manner such that the crimper segments collectively define a variable size aperture that is aligned with the crimper axis. Each of the crimper segments comprises a radio frequency heating element. The actuator is operatively connected to the crimper segments in a manner such that movement of the actuator causes all of the crimper segments to simultaneously move relative to each other and alters the size of the aperture.
40 - Treatment of materials; recycling, air and water treatment,
42 - Scientific, technological and industrial services, research and design
Goods & Services
Custom manufacture of process and testing equipment, namely, stent crimpers, balloon blowers, pleaters and folders, catheter ad stent testers, swagers, tube processors, and thermal bonders Engineering services in the field of medical devices, namely, engineering of custom process and testing equipment, namely, stent crimpers, balloon blowers, pleaters and folders, catheter ad stent testers, swagers, tube processors, and thermal bonders
A method of loading an article, such as a self-expanding stent, into a structure, such as a delivery catheter, including the steps of chilling the article to a predetermined temperature, reducing article size a predetermined amount, inserting fluid into the article, whereby the fluid forms a substantially solid plug with respect to the article, and moving the frozen article. Also provided is an apparatus for loading an article into a structure including: an article size reduction element, a chiller connected to the size reduction element, a cold source communicatively connected to the chiller, and a fluid supply communicatively connected to the size reduction element.
A stent loading device is configured to perform a method of loading a stent into a delivery tube that comprises loading a stent into an opening of a crimping device. The stent has an initial uncompressed diameter. The method further comprises crimping the stent via the crimping device in a manner reducing the diameter of the stent from the initial diameter. Still further, the method comprises forcing the stent out of the opening of the crimping device and into a passageway of a delivery tube while oscillating the crimping device. The passageway of the delivery tube has a diameter that is less than the initial diameter of the stent and receives the stent in its compressed state.
A heart valve prostheses crimping apparatus and method for deducing the diameter of stents containing heart valve prosthesis. A medical prosthesis catheter loading apparatus, including a crimping assembly for reducing the diameter of a prosthesis; and a catheter clamp for holding a catheter adjacent to the prosthesis. Also disclosed is an apparatus for reducing the diameter of a medical prosthesis, including a base, a crimp head connectable to the base, and an actuation mechanism connected to the base and connectable to the crimp head to actuate the crimp head. Also disclosed is a method of loading a medical prosthesis into a catheter, including the steps of reducing the diameter of a prosthesis from its normal deployed state to a diameter less than that of the lumen of the catheter; holding a catheter adjacent to the reduced diameter prosthesis; and moving the prosthesis into the catheter lumen.
B21D 39/00 - Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by platingTube expanders
B23P 11/02 - Connecting or disconnecting metal parts or objects by metal-working techniques, not otherwise provided for by first expanding and then shrinking or vice versa, e.g. by using pressure fluidsConnecting or disconnecting metal parts or objects by metal-working techniques, not otherwise provided for by making force fits
A method of loading an article, such as a self-expanding stent, into a structure, such as a delivery catheter, including the steps of chilling the article to a predetermined temperature, reducing article size a predetermined amount, inserting fluid into the article, whereby the fluid forms a substantially solid plug with respect to the article, and moving the frozen article. Also provided is an apparatus for loading an article into a structure including: an article size reduction element, a chiller connected to the size reduction element, a cold source communicatively connected to the chiller, and a fluid supply communicatively connected to the size reduction element.
A stent loading device is configured to perform a method of loading a stent into a delivery tube that comprises loading a stent into an opening of a crimping device. The stent has an initial uncompressed diameter. The method further comprises crimping the stent via the crimping device in a manner reducing the diameter of the stent from the initial diameter. Still further, the method comprises forcing the stent out of the opening of the crimping device and into a passageway of a delivery tube while oscillating the crimping device. The passageway of the delivery tube has a diameter that is less than the initial diameter of the stent and receives the stent in its compressed state.
A method of sheathing a stent including the steps of providing a stent assembly including a catheter member and a stent member disposed about the catheter member; placing a first sheath film adjacent one side of the stent assembly; placing a second sheath film adjacent an opposite side of the stent assembly, and compressing the stent assembly, whereby the first and second sheath films move toward each other and substantially surround the stent assembly. The first and second sheath films are provided in rolls. Compressing is implemented by a radial compression mechanism. The first and second sheath films pass through the radial compression mechanism. Compressing sheaths the stent assembly and crimps the stent onto the catheter. As an alternative to two sheath films, a single film may be used, whereby compressing surrounds the stent assembly with the single sheath film. Also disclosed is an apparatus for sheathing a stent.
B21D 39/00 - Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by platingTube expanders
B21D 39/04 - Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by platingTube expanders of tubes with tubesApplication of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by platingTube expanders of tubes with rods
B21D 41/00 - Application of procedures in order to alter the diameter of tube ends
Integrating optical systems and methods of use are described herein. In one embodiment, an integrating optical system comprises: a housing having a first and second portions; and a chamber having a diffuse reflective material and a volume formed within the portions when coupled together. The portions are separable to allow insertion and removal of at least one light treatable object in and out of the chamber. At least one aperture is formed in the chamber to couple to a light source and to direct light from the light source to at least a first portion of the diffuse reflective material. At least one holding structure supports the object within the volume at a location, wherein the diffuse reflective material, the aperture and the location ensure that the light is diffusely reflected to integrate the light and impact the object with substantially uniform light without movement of the object.
B60Q 1/26 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
An integrating optical system having a chamber, the chamber having an aperture and at least one portion having a diffuse reflective material; a light source; and a diffuse transmissive baffle. The baffle is located in relation to the chamber such that it is also located in an optical path between the light source and a treatable target. A light-ray originating from the light source is diffusely transmitted from the diffuse transmissive baffle and impinges on an interior surface of the chamber before impinging on the treatable target.
A heart valve prostheses crimping apparatus and method for deducing the diameter of stents containing heart valve prosthesis. A medical prosthesis catheter loading apparatus, including a crimping assembly for reducing the diameter of a prosthesis; and a catheter clamp for holding a catheter adjacent to the prosthesis. Also disclosed is an apparatus for reducing the diameter of a medical prosthesis, including a base, a crimp head connectable to the base, and an actuation mechanism connected to the base and connectable to the crimp head to actuate the crimp head. Also disclosed is a method of loading a medical prosthesis into a catheter, including the steps of reducing the diameter of a prosthesis from its normal deployed state to a diameter less than that of the lumen of the catheter; holding a catheter adjacent to the reduced diameter prosthesis; and moving the prosthesis into the catheter lumen.
A spray coating system and apparatus which has a housing, a sprayer for spraying a liquid on an article or device such as a medical stent, and an assembly for loading, holding, handling and moving the stent relative to the sprayer to provide a particular coating profile thereto. A mandrel based holder may be used with the stent. The system may be substantially automated. In use, an article or device such as a stent is manually or otherwise preloaded on a mandrel, the mandrel is placed in a loader, which transfers the preloaded mandrel to a handler. The handler linearly and rotatably moves the stent under a spray from the sprayer in a predetermined motion or motion profile. The handler then transfers the sprayed product and mandrel to an unloader for removal. The spray system, apparatus and method are particularly useful for spray coating drug or other compositions on medical stents.
A61M 21/00 - Other devices or methods to cause a change in the state of consciousnessDevices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
A method of loading an article, such as a self-expanding stent, into a structures, such as a delivery catheter, including the steps of chilling the article to a predetermined temperature, reducing article size a predetermined amount, inserting fluid into the article, whereby the fluid forms a substantially solid plug with respect to the article, and moving the frozen article. Also provided is an apparatus for loading an article into a structure including: an article size reduction element, a chiller connected to the size reduction element, a cold source communicatively connected to the chiller, and a fluid supply communicatively connected to the size reduction element.
B23P 11/02 - Connecting or disconnecting metal parts or objects by metal-working techniques, not otherwise provided for by first expanding and then shrinking or vice versa, e.g. by using pressure fluidsConnecting or disconnecting metal parts or objects by metal-working techniques, not otherwise provided for by making force fits
A heart valve prostheses crimping apparatus and method for deducing the diameter of stents containing heart valve prosthesis. A medical prosthesis catheter loading apparatus, including a crimping assembly for reducing the diameter of a prosthesis; and a catheter clamp for holding a catheter adjacent to the prosthesis. Also disclosed is an apparatus for reducing the diameter of a medical prosthesis, including a base, a crimp head connectable to the base, and an actuation mechanism connected to the base and connectable to the crimp head to actuate the crimp head. Also disclosed is a method of loading a medical prosthesis into a catheter, including the steps of reducing the diameter of a prosthesis from its normal deployed state to a diameter less than that of the lumen of the catheter; holding a catheter adjacent to the reduced diameter prosthesis; and moving the prosthesis into the catheter lumen.
B23Q 1/00 - Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
B23Q 3/00 - Devices holding, supporting, or positioning, work or tools, of a kind normally removable from the machine
B23Q 7/04 - Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of grippers
A swager for swaging articles, such as marker bands to a medical catheter, comprising an article input mechanism; a radial compression swaging head with a central swaging aperture, the swaging head being aligned and communicatively coupled with the input mechanism to receive an input article from the article input mechanism and to swage the article. The swaging head includes a plurality of swage elements; a rotatable slider plate; a plurality of track rollers; and a closer plate. An input mechanism is aligned and communicatively coupled with the swaging head to assist in delivering an article to the swaging head.
A method of sheathing a stent including the steps of providing a stent assembly including a catheter member and a stent member disposed about the catheter member; placing a first sheath film adjacent one side of the stent assembly; placing a second sheath film adjacent an opposite side of the stent assembly, and compressing the stent assembly, whereby the first and second sheath films move toward each other and substantially surround the stent assembly. The first and second sheath films are provided in rolls. Compressing is implemented by a radial compression mechanism. The first and second sheath films pass through the radial compression mechanism. Compressing sheaths the stent assembly and crimps the stent onto the catheter. As an alternative to two sheath films, a single film may be used, whereby compressing surrounds the stent assembly with the single sheath film. Also disclosed in an apparatus for sheathing a stent, including a compressing mechanism; a sheath film supply; a film feeder for moving at least one sheath film from the film supply through the compressing mechanism, and a stent input system for moving a stent assembly into the crimping mechanism.
B21D 39/00 - Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by platingTube expanders
B21D 39/04 - Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by platingTube expanders of tubes with tubesApplication of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by platingTube expanders of tubes with rods
B21D 41/00 - Application of procedures in order to alter the diameter of tube ends
A heart valve prostheses crimping apparatus and method for deducing the diameter of stents containing heart valve prosthesis. A medical prosthesis catheter loading apparatus, including a crimping assembly for reducing the diameter of a prosthesis; and a catheter clamp for holding a catheter adjacent to the prosthesis. Also disclosed is an apparatus for reducing the diameter of a medical prosthesis, including a base, a crimp head connectable to the base, and an actuation mechanism connected to the base and connectable to the crimp head to actuate the crimp head. Also disclosed is a method of loading a medical prosthesis into a catheter, including the steps of reducing the diameter of a prosthesis from its normal deployed state to a diameter less than that of the lumen of the catheter; holding a catheter adjacent to the reduced diameter prosthesis; and moving the prosthesis into the catheter lumen.
B21D 39/04 - Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by platingTube expanders of tubes with tubesApplication of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by platingTube expanders of tubes with rods
An apparatus for folding a catheter balloon comprises a stationary base member; a rotatable drive hub which is moveable in relation to the stationary base member; and a pleating head aligned with respect to the stationary base member and to the rotatable drive hub. The pleating head includes at least three segments, each having a proximal end and an angled distal end with at least one angled side face terminating in an edge of a predetermined length. Each segment has a centerline between the proximal and distal ends, each segment having a proximal point and a distal point, and the proximal point being pivotally coupled by pins to the stationary base member and the distal point being pivotally coupled by pins to the rotatable hub member. The segments are arranged so that the segment distal ends are disposed adjacent to and a predetermined distance away from a central point and defining a central aperture with a spiral-pleat dimension having at least three channels in communication with a central aperture. Also, the segment centerlines extend therefrom toward the segment distal ends and are oriented away from the central point. The segment distal ends move closer to the central point upon rotation of the rotatable hub member in a predetermined direction, whereby the balloon is disposed around a shaft substrate, aligned in the central aperture and pleated around the shaft substrate upon rotation of the rotatable hub. A method of pleating and folding a catheter balloon is also disclosed.