BEIJING HAIXIN ENERGY TECHNOLOGY CO., LTD. (China)
Inventor
Jiang, Lilong
Ni, Jun
Lin, Jianxin
He, Shengbao
Lin, Ke
Lin, Bingyu
Lin, Xingyi
Abstract
Disclosed is a ruthenium-based catalyst for ammonia synthesis, preparation method and use thereof. The ruthenium-based catalyst comprises Ru—Ba-A core-shell structure which comprises a ruthenium nanoparticle as a core covered with a first shell and a second shell sequentially, wherein the first shell consists of a barium nanoparticle, and the second shell consists of a metal oxide. The Ru—Ba-A core-shell structure can effectively preventing agglomerations of ruthenium nanoparticles during the use of the catalyst and avoiding direct contact between the ruthenium nanoparticles and the metal oxides. In addition, barium nanoparticles have a promoting effect as an electronic promoter, which can effectively improve the stability and catalytic activity of ruthenium-based catalyst for ammonia synthesis, especially in the system for synthesizing ammonia from a coal gas.
An ammonia fuel cell system and an electric device are described. The ammonia fuel cell system includes an ammonia decomposition reaction device, a heating device, a hydrogen fuel cell, a DC/DC converter and an inverter connected successively, a battery pack and a heat exchanger. The heat exchanger of the system, can preheat ammonia gas by energy generated by ammonia decomposition, thereby recycling heat waste. The battery pack supports a quick response and stable output to quickly cope with the acceleration and deceleration of the electric device. This improves the stability of the system operation, and electric energy generated by the hydrogen fuel cell or electric energy in the battery pack can be transferred to the outside. The battery pack or the heating device can provide energy to the ammonia decomposition reaction device, so there is no need to supply outside energy to the ammonia decomposition reaction device.
H01M 8/0606 - Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
B60L 50/51 - Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
B60L 50/75 - Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
C01B 3/04 - Production of hydrogen or of gaseous mixtures containing hydrogen by decomposition of inorganic compounds, e.g. ammonia
H01M 8/04014 - Heat exchange using gaseous fluidsHeat exchange by combustion of reactants
BEIJING HAIXIN ENERGY TECHNOLOGY CO., LTD. (China)
Inventor
Lin, Ke
Ellis-Terrell, Carol A
Wei, Ronghua
Abstract
Apparatuses and methods for making uniform spherical beads are disclosed. Specifically, the uniform spherical beads are made by dropping droplets on a droplet rolling part, creating beads by rolling the droplets on the droplet rolling part from one spot to another spot, and collecting the beads by a beads collector.
B01J 2/06 - Processes or devices for granulating materials, in generalRendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
B01J 2/20 - Processes or devices for granulating materials, in generalRendering particulate materials free flowing in general, e.g. making them hydrophobic by expressing the material, e.g. through sieves and fragmenting the extruded length
BEIJING HAIXIN ENERGY TECHNOLOGY CO., LTD. (China)
Inventor
Lin, Ke
Li, Lin
Guo, Lixin
Abstract
Disclosed is a process for the one-pot liquefaction of a biomass or coal and a biomass, the process comprising: first preparing a slurry containing a catalyst, a vulcanizing agent and a biomass (and coal), and then introducing hydrogen gas into the slurry to carry out a reaction. Preparing the slurry comprises: subjecting a biomass (and coal) sequentially to drying, a first pulverization, compression and a second pulverization, then mixing same with a catalyst and a vulcanizing agent to obtain a mixture, and adding the mixture to an oil product for grinding and pulping to obtain a biomass slurry. By means of the treatment process of subjecting the straw firstly to compression and then to a second pulverization, the volume of the straw is greatly reduced, thereby facilitating the dispersion thereof in the oil product.
C10G 1/06 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
C10L 1/32 - Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions
BEIJING HAIXIN ENERGY TECHNOLOGY CO., LTD. (China)
Inventor
Lin, Ke
Guo, Lixin
Cui, Yongjun
Abstract
Provided is a conversion process for an inferior oil, relating to the field of biomass utilization, energy and chemical industry. The conversion process is carried out in presence of a catalyst selected from the group consisting of an iron oxide compound, a desulfurization waste agent resulting from use of an iron oxide compound as desulfurizer, and a regeneration product of the desulfurization waste agent, under a controlled molar ratio of iron element to sulfur element. It is found that free radical condensation polymerization of inferior oil during cracking process can be blocked effectively by using carbonylation, and hydrogenation is achieved with active hydrogen produced from the conversion of CO and water. In the conversion process, inferior oil can be, directly converted, thereby increasing liquefaction yield and calorific value of the obtained oils. No large amount of waste water is generated after completion of the conversion.
C10G 69/04 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
C10G 1/06 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
C10G 1/08 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation with moving catalysts
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C10G 3/00 - Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
BEIJING HAIXIN ENERGY TECHNOLOGY CO., LTD. (China)
Inventor
Lin, Ke
Guo, Lixin
Cui, Yongjun
Li, Shengfeng
Cui, Dongmei
Abstract
Provided is a conversion process for an organic oil, relating to the field of biomass utilization, energy and chemical industry. The conversion process is carried out in presence of an aqueous slurry and a catalyst selected from the group consisting of an iron oxide compound, a waste agent resulting from use of an iron oxide compound as desulfurizer, and a regeneration product of the waste agent, under a controlled molar ratio of iron element to sulfur element. It is found that free radical condensation polymerization of organic oil during cracking process can be blocked effectively by using carbonylation, and hydrogenation is achieved with active hydrogen produced from the conversion of CO and water. In the conversion process, organic material, especially biomass solid, can be directly converted without dehydration, and water can be additionally added to the biomass liquid or the mineral oil.
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
C10G 1/06 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
C10G 45/40 - Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing platinum group metals or compounds thereof
C10G 45/36 - Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
C10G 45/52 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing platinum group metals or compounds thereof
C10G 45/48 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C10G 45/54 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
7.
Use of magnetic iron oxide red in catalyzing and oxidizing methanthiol and methods for preparing and appling same
32 is prepared with a carbonate and a ferrite as raw materials, has advantages of low cost and simple preparation process, and is suitable for industrial production.
C07C 319/24 - Preparation of thiols, sulfides, hydropolysulfides or polysulfides of hydropolysulfides or polysulfides by reactions involving the formation of sulfur-to-sulfur bonds
Desulfurizer for conversion and absorption of high-concentration carbonyl sulfide and a desulfurizer for catalytic conversion and absorption of carbon disulfide and their preparation methods
3, calcining to activate at 500° C.-700° C., mixing with the magnetic iron oxide red and binder, roll molding at room temperature to form balls which are dried at 100° C.-150° C. to obtain the desulfurizer. The desulfurizer has a hydrolysis conversion of carbonyl sulfide higher than 99%, and has a higher sulfur capacity more than 25%.
B01J 20/02 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material
B01J 20/04 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
B01J 20/08 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group comprising aluminium oxide or hydroxideSolid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group comprising bauxite
B01J 20/12 - Naturally occurring clays or bleaching earth
B01J 20/30 - Processes for preparing, regenerating or reactivating
B01J 23/78 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups with alkali- or alkaline earth metals or beryllium
A method for preparing amorphous iron oxide hydroxide, comprising following steps: (1) preparing a ferrous salt solution with solid soluble ferrous salt; (2) preparing a hydroxide solution; (3) mixing said hydroxide solution and said ferrous salt solution in a co-current manner for reaction at an alkali ratio of 0.6˜0.8 and a reaction temperature not exceeding 30° C.; (4) after the reaction in step (3) is finished, yielding a first mixture, then charging said first mixture with a gas containing oxygen for oxidation, and controlling the first mixture at a pH value of 6˜8 until the oxidation is finished to yield a second mixture; and (5) filtering, washing with water and drying said second mixture obtained in step (4) to yield the amorphous iron oxide hydroxide.
32, comprising the following steps: (1) preparing a ferrous salt solution with solid soluble ferrous salt; (2) preparing a hydroxide solution; (3) mixing said hydroxide solution and said ferrous salt solution in a co-current manner for reaction at an alkali ratio of 0.6-0.8 and a reaction temperature not exceeding 30° C.; (4) after the reaction in step (3) is finished, yielding a first mixture, then charging said first mixture with a gas containing oxygen for oxidation, and controlling the first mixture at a pH value of 6-8 until the oxidation is finished to yield a second mixture; (5) filtering, washing with water and drying said second mixture obtained in step (4) to yield a precursor; and (6) calcining the precursor obtained in step (5) at 250-400° C.
H01F 1/01 - Magnets or magnetic bodies characterised by the magnetic materials thereforSelection of materials for their magnetic properties of inorganic materials
11.
Process for preparing ball-type desulfurizer with high sulfur capacity and product thereof
The present invention provides a process for preparing ball-type desulfurizer with high sulfur capacity, comprising the following steps: placing initial balls in a rolling equipment; wetting the surface of the initial balls with an aqueous solution of an organic binder; then alternately adding non-crystalline iron oxide hydroxide and the aqueous solution of the organic binder to gradually form small balls of non-crystalline iron oxide hydroxide with high sulfur capacity and different diameters; and adjusting the shape of the small balls and then roasting or naturally drying the small balls. In the desulfurizer prepared by this method, the initial balls constitutes 0.98 wt %-9.03 wt % of the desulfurizer, the non-crystalline iron oxide hydroxide constitutes 90.29 wt %-98.62 wt % of the desulfurizer, and the organic binder constitutes 0.58 wt %-0.89 wt % of the desulfurizer. The present invention solves the problems that the desulfurizer with high sulfur capacity in the prior art has a high binder content and poor water resistance and diffusion performance, and provides a process for preparing a desulfurizer with high sulfur capacity, wherein a desulfurizer with high sulfur capacity and low binder content, good water resistance, good diffusion performance can be prepared.
B01J 20/06 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group
B01J 20/08 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group comprising aluminium oxide or hydroxideSolid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group comprising bauxite
B01J 20/30 - Processes for preparing, regenerating or reactivating
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
B01J 20/10 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
B01J 20/02 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material
H01F 1/01 - Magnets or magnetic bodies characterised by the magnetic materials thereforSelection of materials for their magnetic properties of inorganic materials
B01D 53/02 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography
Methods for preparing a composition containing amorphous iron oxide hydroxide. Methods for regeneration of the amorphous iron oxide hydroxide after it has been used as desulfurizer. Regenerable desulfurizer with high sulfur capacity containing amorphous iron oxide hydroxide, not less than 88% w/w, and organic binder not less than 7% w/w. The organic binder is sodium carboxymethylcellulose, sesbania powder, cellulose powder, or a mixture thereof A method for preparing the desulfurizer. A method for regenerating the waste agent produced after the desulfurizer and the composition containing the desulfurizer are used as desulfurizer. This method allows the desulfurizer and the composition containing the desulfurizer to be regenerated and reused avoiding the need for landfill disposal and environmental pollution.
B01J 20/00 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof
B01J 20/06 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group
B01J 20/02 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
Filters; gas scrubbing apparatus; boilers, other than parts
of machines; water purification installations; air purifying
apparatus and machines; purification installations for
sewage; purification installations for sewage; water
purifying apparatus and machines; oil-scrubbing apparatus;
sewage treatment equipment.
Filters; gas scrubbing apparatus; boilers, other than parts
of machines; water purification installations; air purifying
apparatus and machines; purification installations for
sewage; purification installations for sewage; water
purifying apparatus and machines; oil-scrubbing apparatus;
sewage treatment equipment.
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
Catalysts; anti-bubbling agents (chemicals); scale removing
preparations, other than for household purposes; decolorants
for industrial purposes; detergents for use in manufacturing
processes; activated carbons; purification preparations; gas
purifying preparations; petroleum dispersants; oil-purifying
chemicals.
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
Catalysts; antibubbling agent; scale removing preparations,
other than for household purposes; decolorants for
industrial purposes; detergents for use in manufacturing
processes; activated carbons; purification preparations; gas
purifying preparations; petroleum dispersants; oil-purifying
chemicals.
20.
Methods for preparing and regenerating materials containing amorphous iron oxide hydroxide and desulfurizer comprising the same
Methods for preparing a composition containing amorphous iron oxide hydroxide. Methods for regeneration of the amorphous iron oxide hydroxide after it has been used as desulfurizer. Regenerable desulfurizer with high sulfur capacity containing amorphous iron oxide hydroxide, not less than 88% w/w, and organic binder not less than 7% w/w. The organic binder is sodium carboxymethylcellulose, sesbania powder, cellulose powder, or a mixture thereof. A method for preparing the desulfurizer. A method for regenerating the waste agent produced after the desulfurizer and the composition containing the desulfurizer are used as desulfurizer. This method allows the desulfurizer and the composition containing the desulfurizer to be regenerated and reused avoiding the need for landfill disposal and environmental pollution.
Preparation and repeated regeneration of material containing amorphous iron oxide hydroxide, desulfurization agents containing the material, and preparation and repeated regeneration thereof
Method for preparing material containing amorphous iron oxide hydroxide, the method including: mixing an aqueous ferrous salt solution and hydroxide solution or solid hydroxides at the temperature of below 70° C., filtering the reaction solution, washing the filter cake, preparing suspension solution of the filter cake, blowing an oxygen-containing gas into the suspension solution to oxidize the ferrous iron, and then filtering and drying. The material after being used as desulfurization agent can be repeatedly regenerated through oxidation in an oxygen-containing gas. A desulfurization agent, and methods for preparation and repeated regeneration thereof. The desulfurization agent contains the material and organic binders, and may also include a small amount of additives. The organic binders are selected from sodium carboxymethyl cellulose, sesbania powder, and cellulose powder, and the additives are selected from sawdust, rice husk power, and bran.
Methods for regenerating amorphous iron oxide hydroxide after being used as desulfurizer by (1) grinding a waste mixture into waste powder, wherein the waste mixture results from use of the composition comprising amorphous iron oxide hydroxide as desulfurizer; (2) preparing the waste powder into a suspension and charging the suspension with a gas containing oxygen to obtain a slurry comprising amorphous iron oxide hydroxide and elemental sulfur; and (3) placing the slurry or a solid resulting from filtering the slurry into a container and charging the slurry or the solid with air so that the elemental sulfur floats and the amorphous iron oxide hydroxide precipitates.
2S. A simple method for removing hydrogen sulfide from gas at room temperature and normal pressure, which features high desulfurization rate and low cost.
A desulfurizer containing at least a composition of a highly concentrated amorphous iron oxide hydroxide as the active ingredient. A method for preparing a composition containing at least a highly concentrated amorphous iron oxide hydroxide. A method for regenerating the desulfurizer. The desulfurizer contains at least the composition of a highly concentrated amorphous iron oxide hydroxide as the active ingredient and a binder. The composition and the desulfurizer have a high sulfur capacity and can be regenerated. This saves resources and reduces environmental pollution. The method for regenerating the desulfurizer includes at least the following steps: a) mixing a solid soluble ferrous salt with a solid hydroxide, b) kneading the mixture and allowing it to react at temperatures not exceeding 90° C., c) drying in air, d) washing with water and filtering to yield a solid, and e) drying naturally or roasting the solid.
The present invention discloses a composition for a desulfurizer with a high sulfur capacity and a process for making the same. The composition comprises the active components of three kinds of iron oxides and is used in the desulfurizer to remove hydrogen sulfide from the gaseous and liquid state feed stocks. The process for preparing the composition comprises the following steps: (1) mixing a solid ferrous compound with a solid hydroxide at a molar ratio of iron to hydroxyl being in the range from 1:2 to 1:3; (2) kneading the mixture feeds obtained in step (1) and making them react completely; (3) drying the products obtained in step (2) in the air; (4) washing and filtering the feeds obtained in the step (3); (5) naturally drying or baking the solids obtained in step (4) to form a composition for a desulfurizer with a high sulfur capacity.