42 - Scientific, technological and industrial services, research and design
Goods & Services
Providing on-line non-downloadable software for monitoring operating performance and providing real time analytics to use with extrusion cooking processing systems comprising feeders, batch mixers, preconditioners, extrusion cookers, cutoff knives, conveyors, horizontal and vertical dryers and ovens, coolers, coating/enrobing systems, fat conditioning feeders, fat applicators, and other processing equipment associated with extruded food and feed including milling systems, cutters, formers, and fryers
Methods for the production of a variety of tortilla products involve initial extrusion of one or more grain(s) and/or legume(s) using a twin-screw extruder, followed by mixing the extrudate with water and other ingredients to form a tortilla dough. The dough is then subdivided and formed into a flat tortilla shape, followed by cooking. The grain(s) and/or legume(s) may be previously extruded as a part of a continuous process. High quality tortilla products may be produced using a wide variety of grain(s) and/or legume(s), including gluten-free ingredients.
Apparatus and methods for food production including a food preconditioner (228) operable to heat and partially pre-cook food ingredients, and a twin screw extruder (20) operable to further cook the preconditioned ingredients to create final food products. The extruder (20) includes a pair of hollow core extrusion screws (50, 52, 124, 126, 190) having elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) is also of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). The fighting (56, 132, 134, 194) also includes forward, reverse pitch sections (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to impart high levels of thermal energy into materials being processed in the extruders (20), without adding additional moisture.
B01F 27/1143 - Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections screw-shaped, e.g. worms
B01F 27/2121 - Mixers with rotary stirring devices in fixed receptaclesKneaders characterised by their rotating shafts composed of interconnected parts
B01F 27/27 - Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
B01F 27/272 - Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
B01F 27/722 - Mixers with rotary stirring devices in fixed receptaclesKneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two or more helices in the same receptacle the helices closely surrounded by a casing
B01F 27/723 - Mixers with rotary stirring devices in fixed receptaclesKneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two or more helices in the same receptacle the helices intermeshing to knead the mixture
B01F 27/726 - Mixers with rotary stirring devices in fixed receptaclesKneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two helices with opposite pitch on the same shaftMixers with rotary stirring devices in fixed receptaclesKneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two helices on the same axis, driven in opposite directions or at different speeds
B01F 35/95 - Heating or cooling systems using heated or cooled stirrers
B29C 48/40 - Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws, e.g. twin screw extruders
B29C 48/84 - Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders by heating or cooling the feeding screws
High meat content extruded pet foods and methods of preparation thereof, preferably include initial treatment of a high moisture meat slurry to create a dewatered meat fraction and a liquid fraction. The liquid fraction is directed to an extruder, along with typical dry pet food ingredients, in order to create an extruded intermediate. This intermediate is then mixed with the dewatered meat fraction, and the mixture is then extruded and dried to create a final pet food. The methods may be carried out using separate processing systems each including a mixer, an extruder, and a drying assembly, in order to maximize production rates.
A23K 40/25 - Shaping or working-up of animal feeding-stuffs by extrusion
A23K 10/20 - Animal feeding-stuffs from material of animal origin
A23K 10/30 - Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hayAnimal feeding-stuffs from material of fungal origin, e.g. mushrooms
A23N 17/00 - Apparatus specially adapted for preparing animal feeding-stuffs
High meat content extruded pet feeds and methods of preparation thereof, make use of relatively high meat contents which include quantities of previously dewatered meat. In an embodiment, the total meat content of the feeds consists essentially of dewatered emulsified poultry meat or other meat sources commonly used in the pet food industry. In the methods, mixtures containing starch, fat, and meat, the latter including dewatered meat, are passed through an extruder followed by staged drying. The extruder may be of twin screw design having hollow core screws permitting introduction of steam or other heat exchange media into the screws.
High Specific Mechanical Energy extruder screw assemblies (14, 88, 98) and complete extruders (10, 86, 96) are provided, which include wide-flight intermediate screw sections (104) having axial flight widths greater than the flight widths of the inlet and outlet screw sections (102, 106) on opposite sides of the intermediate sections (104). The intermediate sections (104) provide increased friction and shear serving to enhance the SMEs imparted to comestible food materials during processing thereof.
A meat dewatering assembly (10) includes a support frame (12), a twin screw dewatering unit (14), a drive assembly (16) coupled with the unit (14), and a perforated housing (60). The unit (14) has a pair of tapered, non-parallel, intermeshed, helically flighted screws (52, 54) presenting nip clearances (59) between the fighting (55). The drive assembly (16) serves to counter-rotate the screws (52, 54). In use, emulsified meat is passed into the housing (60) during counter-rotation of the screws (52, 54), in order to compress the meat within the clearances (59) and thereby express water from the meat. Adjustment collars (38) permit selective size alteration of the nip clearances (59).
Apparatus and methods for food production including a food preconditioner (228) operable to heat and partially pre-cook food ingredients, and a twin screw extruder (20) operable to further cook the preconditioned ingredients to create final food products. The extruder (20) includes a pair of hollow core extrusion screws (50, 52, 124, 126, 190) having elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) is also of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). The flighting (56, 132, 134, 194) also includes forward, reverse pitch sections (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to impart high levels of thermal energy into materials being processed in the extruders (20), without adding additional moisture.
B01F 7/08 - Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices
B29C 48/84 - Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders by heating or cooling the feeding screws
B29C 48/40 - Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws, e.g. twin screw extruders
A23K 40/25 - Shaping or working-up of animal feeding-stuffs by extrusion
A23N 17/00 - Apparatus specially adapted for preparing animal feeding-stuffs
A23K 10/20 - Animal feeding-stuffs from material of animal origin
A23K 50/40 - Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.
High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.
B01F 7/08 - Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices
B29C 48/84 - Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders by heating or cooling the feeding screws
B29C 48/40 - Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws, e.g. twin screw extruders
A23K 40/25 - Shaping or working-up of animal feeding-stuffs by extrusion
B01F 7/00 - Mixers with rotary stirring devices in fixed receptacles; Kneaders
A23N 17/00 - Apparatus specially adapted for preparing animal feeding-stuffs
A23K 10/20 - Animal feeding-stuffs from material of animal origin
A23K 50/40 - Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
High Specific Mechanical Energy extruder screw assemblies (14, 88, 98) and complete extruders (10, 86, 96) are provided, which include wide-flight intermediate screw sections (104) having axial flight widths greater than the flight widths of the inlet and outlet screw sections (102, 106) on opposite sides of the intermediate sections (104). The intermediate sections (104) provide increased friction and shear serving to enhance the SMEs imparted to comestible food materials during processing thereof.
a) include an elongated processor barrel (38) presenting an inner surface (44) with a central body or tube (60) within the barrel (38) and presenting an outer surface (62). The surfaces (38, 62) define an elongated annular processing region (70). The barrel (38) and tube (60) are steam heated by means of apparatus (52, 66). A rotatable processing element (72) is also located within the region (70). The element (72) has a plurality of vanes (88, 104), which scrape the surfaces (44, 62) to prevent buildup of material on these surfaces.
A meat dewatering assembly (10) includes a support frame (12), a twin screw dewatering unit (14), a drive assembly (16) coupled with the unit (14), and a perforated housing (60). The unit (14) has a pair of tapered, non-parallel, intermeshed, helically flighted screws (52, 54) presenting nip clearances (59) between the fighting (55). The drive assembly (16) serves to counter-rotate the screws (52, 54). In use, emulsified meat is passed into the housing (60) during counter-rotation of the screws (52, 54), in order to compress the meat within the clearances (59) and thereby express water from the meat. Adjustment collars (38) permit selective size alteration of the nip clearances (59).
High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.
The present invention provides improved apparatus and methods for the monitoring and control of apparatus designed to remove moisture from an initially wet product, such as a continuous dryer (14). The net rate of water removal from the wet product (16) is determined during drying thereof, preferably on a real-time basis. A control assembly (20) is operatively coupled with the dryer (14) and includes sensors (24, 26, 28, 34), which are operatively coupled with a digital controller (38). The controller (38) has a PID controller operable to continuously determine the average net rate of water removal from the product (16).
F26B 25/22 - Controlling the drying process in dependence on liquid content of solid materials or objects
A23L 3/40 - Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
F26B 15/14 - Machines or apparatus for drying objects with progressive movementMachines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound the lines being all horizontal or slightly inclined the objects or batches of materials being carried by trays or racks
F26B 23/10 - Heating arrangements using tubes or passages containing heated fluids
The present invention provides improved apparatus and methods for the monitoring and control of apparatus designed to remove moisture from an initially wet product, such as a continuous dryer (14). The net rate of water removal from the wet product (16) is determined during drying thereof, preferably on a real-time basis. A control assembly (20) is operatively coupled with the dryer (14) and includes sensors (24, 26, 28, 34), which are operatively coupled with a digital controller (38). The controller (38) has a PID controller operable to continuously determine the average net rate of water removal from the product (16).
F26B 21/00 - Arrangements for supplying or controlling air or gases for drying solid materials or objects
A23L 3/40 - Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
F26B 15/14 - Machines or apparatus for drying objects with progressive movementMachines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound the lines being all horizontal or slightly inclined the objects or batches of materials being carried by trays or racks
A product-spreading hood assembly (10) for use with a die unit (128) includes a deflector (14) having wall structure defining a product inlet opening (90) and a product outlet opening (92); the deflector (14) is preferably generally frustoconical in shape and is supported by a housing (12). An optional air delivery assembly (16) allows air currents to be directed from the area of the inlet (90) towards outlet (92) to facilitate separation of discrete products. Advantageously, the air currents are delivered in a circumferential fashion about the die unit (128). Use of the hood assembly (10) serves to separate high moisture or “sticky” extrudates, thereby preventing agglomeration thereof.
B29C 47/00 - Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor (extrusion blow-moulding B29C 49/04)
B29C 47/08 - Component parts, details or accessories; Auxiliary operations
B65G 53/04 - Conveying materials in bulk pneumatically through pipes or tubesAir slides
B01J 2/04 - Processes or devices for granulating materials, in generalRendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
B29C 47/88 - Heating or cooling the stream of extruded material
B29B 13/04 - Conditioning or physical treatment of the material to be shaped by cooling
B29B 9/06 - Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
A23L 1/00 - Foods or foodstuffs; Their preparation or treatment (preservation thereof in general A23L 3/00)
A product-spreading hood assembly (10) for use with a die unit (128) includes a deflector (14) having wall structure defining a product inlet opening (90) and a product outlet opening (92); the deflector (14) is preferably generally frustoconical in shape and is supported by a housing (12). An optional air delivery assembly (16) allows air currents to be directed from the area of the inlet (90) towards outlet (92) to facilitate separation of discrete products. Advantageously, the air currents are delivered in a circumferential fashion about the die unit (128). Use of the hood assembly (10) serves to separate high moisture or “sticky” extrudates, thereby preventing agglomeration thereof.
B29C 47/00 - Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor (extrusion blow-moulding B29C 49/04)
B01J 2/04 - Processes or devices for granulating materials, in generalRendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
B29C 47/88 - Heating or cooling the stream of extruded material
B29B 13/04 - Conditioning or physical treatment of the material to be shaped by cooling
B29B 9/06 - Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
A23L 1/00 - Foods or foodstuffs; Their preparation or treatment (preservation thereof in general A23L 3/00)
A product-spreading hood assembly (10) for use with a die unit (128) includes a deflector (14) having wall structure defining a product inlet opening (90) and a product outlet opening (92); the deflector (14) is preferably generally frustoconical in shape and is supported by a housing (12). An optional air delivery assembly (16) allows air currents to be directed from the area of the inlet (90) towards outlet (92) to facilitate separation of discrete products. Advantageously, the air currents are delivered in a circumferential fashion about the die unit (128). Use of the hood assembly (10) serves to separate high moisture or “sticky” extrudates, thereby preventing agglomeration thereof.
B29C 47/00 - Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor (extrusion blow-moulding B29C 49/04)
B01J 2/04 - Processes or devices for granulating materials, in generalRendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
B29C 47/88 - Heating or cooling the stream of extruded material
B29B 13/04 - Conditioning or physical treatment of the material to be shaped by cooling
B29B 9/06 - Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
A23L 1/00 - Foods or foodstuffs; Their preparation or treatment (preservation thereof in general A23L 3/00)
An improved dual-shaft preconditioner (10) of simplified design is provided giving increased moisturization and partial cooking of food or feed ingredients. The preconditioner (10) includes an elongated, tapered housing (12) presenting a pair of side-by-side, communicating housing sections (58, 60), with a corresponding pair of converging shafts (20, 22) within the sections (58, 60) and having a series of elongated, outwardly extending mixing elements (24, 26) secured to the shafts (20, 22). The preconditioner (10) is designed for use in a system including a downstream processing device, such as an extruder (146).
B01F 7/04 - Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles or arms
B01F 7/08 - Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices
H01L 21/768 - Applying interconnections to be used for carrying current between separate components within a device
A47J 36/00 - Parts, details or accessories of cooking-vessels
21.
Steam/water static mixer injector for extrusion equipment
Apparatus (20) for injection of fluid into extrusion system components such as a preconditioner (24) or extruder (100) is provided, preferably as a composite assembly including a fluid injection valve (52) and an interconnected static mixer section (54). Alternately, use may be made of the fluid injection valve (52) or static mixer section (54) alone. The invention greatly simplifies the fluid injection apparatus used in extrusion systems, while giving more efficient absorption of thermal energy with a minimum of environmental contamination, and the ability to inject multiple streams into the extrusion systems.
Apparatus (20) for injection of fluid into extrusion system components such as a preconditioner (24) or extruder (100) is provided, preferably as a composite assembly including a fluid injection valve (52) and an interconnected static mixer section (54). Alternately, use may be made of the fluid injection valve (52) or static mixer section (54) alone. The invention greatly simplifies the fluid injection apparatus used in extrusion systems, while giving more efficient absorption of thermal energy with a minimum of environmental contamination, and the ability to inject multiple streams into the extrusion systems.
Improved processes for the production of engineered feed or food ingredients by extrusion comprise the steps of directing a dry fraction and a byproduct slurry fraction in serial order through a preconditioner and twin-screw extruder in order to create a wet extrudate, which is thereafter dried. The dry fraction is selected from sources of plant-derived starch and/or protein, sources of animal-derived functional proteins, and mixtures thereof. The slurry fraction comprises aqueous byproduct slurries from meat, dairy, vegetable, and fruit processing. The extrusion processes yield high-quality ingredients without the need for conventional rendering.
A product-spreading hood assembly (10) for use with a die unit (128) includes a deflector (14) having wall structure defining a product inlet opening (90) and a product outlet opening (92); the deflector (14) is preferably generally frustoconical in shape and is supported by a housing (12). An optional air delivery assembly (16) allows air currents to be directed from the area of the inlet (90) towards outlet (92) to facilitate separation of discrete products. Advantageously, the air currents are delivered in a circumferential fashion about the die unit (128). Use of the hood assembly (10) serves to separate high moisture or “sticky” extrudates, thereby preventing agglomeration thereof.
B29C 47/00 - Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor (extrusion blow-moulding B29C 49/04)
B01J 2/04 - Processes or devices for granulating materials, in generalRendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
B29C 47/88 - Heating or cooling the stream of extruded material
B29B 13/04 - Conditioning or physical treatment of the material to be shaped by cooling
B29B 9/06 - Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
A23L 1/00 - Foods or foodstuffs; Their preparation or treatment (preservation thereof in general A23L 3/00)
Twin screw cooking extruders are provided requiring reduced specific mechanical energy inputs, through use of screw assemblies including first and second elongated, axially rotatable screws which are substantially coextensive in length, with the screw flighting presenting a pair of axially spaced apart sections of short pitch length and intermediate sections of greater pitch length. The intermediate sections have an axial length greater than about four times the length of the axially spaced apart sections.
B29C 47/00 - Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor (extrusion blow-moulding B29C 49/04)
A23N 17/00 - Apparatus specially adapted for preparing animal feeding-stuffs
B30B 11/24 - Extrusion pressesDies therefor using screws or worms
An improved screw feeder assembly is provided for interconnection between the outlet of a preconditioner and the inlet of an extruder barrel. The assembly includes an upright housing with a pair of elongated shafts equipped with auger flighting within the housing and driven by means of motor. Preferably, the housing is mechanically coupled to the outlet and inlet with the shafts extending through the preconditioner vessel and downwardly to a point within the inlet and closely adjacent the screw(s) within the extruder barrel; the flighting is provided along the length of the housing, from a point closely adjacent the outlet and into the extruder inlet. This provides a positive conveyance of preconditioned material from the outlet to the inlet. Use of the assembly allows maintenance of superatmospheric pressures and temperatures above 212° F. within the preconditioner, which permits more efficient processing.
B01F 7/04 - Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles or arms
27.
Screw assembly for cooking extruders operating with significantly reduced specific mechanical energy inputs
Screw assemblies are provided for cooking extruders characterized by operation using significantly reduced specific mechanical energy inputs, wherein the screw assemblies include first and second elongated, axially rotatable screws which are substantially coextensive in length, with the screw flighting presenting a pair of axially spaced apart sections of short pitch length and an intermediate section of greater pitch length. The intermediate section has an axial length greater than about four times the length of the axially spaced apart sections. The screw assemblies permit incorporation of significantly greater amounts of steam into comestible products during cooking thereof, as compared with prior art designs.
B29B 7/48 - MixingKneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
Improved preconditioners (10) are provided for partial moisturization of human food or animal feed ingredients prior to downstream final processing thereof in an extruder (56) or pellet mill. The preconditioner (10) preferably includes an elongated housing (12) having a wall (14) with an inlet (20) and an opposed outlet (22). The housing (12) also has a larger diameter end wall (16) proximal to the inlet (20), a smaller diameter end wall (18) proximal to outlet (22), and a progressively converging housing wall (14) with a taper angle of from about 2-9°. A shaft (36) extends along the length of housing (14) and supports a plurality of outwardly extending mixing elements (46) positioned in axially and circumferentially spaced relationship along the length of the shaft (36). The outer margins (54) of the mixing elements (46) cooperatively define a taper along the length of the housing wall (14). The shaft (36) is designed to operate at high rotational speeds, and the mixing elements (46) may be selectively angularly oriented to retard or increase the flow rate of materials through the preconditioner (10). The simplified preconditioner (10) is operable to provide high degrees of moisturization and precooking.
B01F 7/04 - Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles or arms
Improved extruded starch-bearing products (e.g., starches, starch-bearing legumes, starch-bearing grains and formulations containing any of the foregoing) are provided having relatively high cook values and low cold water viscosities. The products are prepared by initial preconditioning to partially cook the starting material(s), followed by low shear extrusion cooking, with a total STE/SME ratio of at least about 4.
Improved preconditioners (10) are provided for partial moisturization of human food or animal feed ingredients prior to downstream final processing thereof in an extruder (56) or pellet mill. The preconditioner (10) preferably includes an elongated housing (12) having a wall (14) with an inlet (20) and an opposed outlet (22). The housing (12) also has a larger diameter end wall (16) proximal to the inlet (20), a smaller diameter end wall (18) proximal to outlet (22), and a progressively converging housing wall (14) with a taper angle of from about 2-9°. A shaft (36) extends along the length of housing (14) and supports a plurality of outwardly extending mixing elements (46) positioned in axially and circumferentially spaced relationship along the length of the shaft (36). The outer margins (54) of the mixing elements (46) cooperatively define a taper along the length of the housing wall (14). The shaft (36) is designed to operate at high rotational speeds, and the mixing elements (46) may be selectively angularly oriented to retard or increase the flow rate of materials through the preconditioner (10). The simplified preconditioner (10) is operable to provide high degrees of moisturization and precooking.
B01F 7/04 - Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles or arms
31.
Method of preconditioner control with reduced or zero waste
Improved, low- or no-waste control methods for food processing systems including a preconditioner (14) and a downstream processing device such as an extruder (16) are provided. The control methods include both startup and shutdown sequences, and an optional flush sequence. During startup, a gate (64) of preconditioner (14) is initially closed and is thereafter sequentially opened to a full open, normal operating position after predetermined preconditioner temperature and/or weight set points are achieved. Shutdown involves terminating the flow of ingredients to the preconditioner (14) while the gate (64) remains open, with the preconditioner operated to deliver the preconditioned material within the preconditioner (14) to the extruder (16) for as long as possible in order to minimize any residual waste within the preconditioner.
Improved extruded starch-bearing grain products (e.g., corn and wheat) are provided having relatively high cook values and low cold water viscosities. The products are prepared by initial preconditioning to partially cook the starting material(s), followed by low shear extrusion cooking, with a total STE/SME ratio of at least about 4.
Improved extruders and methods for the extrusion cooking of comestible products such as human foods or animal feeds are provided wherein the products may be produced with very low specific mechanical energy (SME) inputs as compared with conventional processing. The methods preferably involve introduction of very high levels of steam into the extruder barrel (12) during processing, which concomitantly reduces necessary SME inputs required to achieve desired cook and expansion levels in the products. In accordance with the invention, fully-cooked pet foods can be fabricated with SME inputs of up to about 18 kWhr/T, whereas aquatic feeds can be fabricated with SME inputs of up to about 16 kWhr/T. In preferred forms, the extruder (10) includes specially configured, intermeshed extrusion screws (18, 20) and a plurality of obliquely oriented steam inlets (48, 50), and an upstream, dual-shaft preconditioner (90) is used having individual variable frequency drives (98, 100) which allow infinite variablility in the speed and rotational direction of the preconditioner shafts (94, 96).
An improved, dual-shaft preconditioner (10, 70, 102) is provided having independent drive mechanism (18, 20, 78, 80) operatively coupled with a corresponding preconditioner shaft (14, 16, 74, 76, 106, 108) and permitting selective rotation of the shafts (14, 16, 74, 76, 106, 108) at rotational speeds and directions independent of each other. Preferably, the speed differential between the shafts (14, 16, 74, 76, 106, 108) is at least about 5:1. The mechanisms (18, 20, 78, 80) are operatively coupled with a digital control device (60) to allow rotational speed and direction control. Preferably, the preconditioner (10, 70, 102) is supported on load cells (62, 100) also coupled with control device (60) to permit on-the-go changes in material retention time within the preconditioner (10, 70, 102). The preconditioner (10, 70, 102) is particularly useful for the preconditioning and partial gelatinization of starch-bearing feed or food materials, to an extent to achieve at least about 50% cook in the preconditioned feed or food materials.
An improved extruder (10) is provided which permits successful introduction of very high quantities of injected steam into material being processed, on the order of 6-8% or more by weight steam. The extruder (10) includes an elongated extruder barrel (12) having at least one elongated, axially rotatable, helically flighted extrusion screw (16,18) therein. The barrel (12) is equipped with obliquely oriented steam injection ports (44, 46) along the length thereof, housing steam injectors (48, 50). The barrel (12) includes relatively high free volume steam injection heads (32 and 38, 40) having therein screw sections (78, 82) of relatively long pitch length, together with steam restriction heads (30, 34, and 42) on opposite sides of the injection heads (32, and 38, 40) having therein relatively short pitch length screw sections (76, 80, 84).
An improved, dual-shaft preconditioner (10, 70) is provided having independent drive mechanism (18, 20, 78, 80) operatively coupled with a corresponding preconditioner shaft (14, 16, 74, 76) and permitting selective rotation of the shafts (14, 16, 74, 76) at rotational speeds and directions independent of each other. The mechanisms (18, 20, 78, 80) are operatively coupled with a digital controller (60) to allow rotational speed and direction control. Preferably, the preconditioner (10, 70) is supported on load cells (62, 100) also coupled with controller (60) to permit on-the-go changes in material retention time within the preconditioner (10, 70). The preconditioner (10, 70) is particularly useful for the preconditioning and partial gelatinization of starch-bearing feed or food materials.
B01F 7/04 - Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles or arms
09 - Scientific and electric apparatus and instruments
11 - Environmental control apparatus
Goods & Services
commercial and industrial food processing machines, namely the following - twin screw extruders; single screw extruders; extrusion processing systems comprising feeders, preconditioners, extrusion cookers, cutoff knives, conveyors and drying apparatus, batch mixers; aquatic feed systems comprising extrusion processing systems with fat conditioning feeders and fat applicators commercial and industrial food processing machines, namely the following - electrical controllers, namely automated programmable logic controllers commercial and industrial food processing machines, namely enrobers/dryers sold as a unit, dryers, dryers/coolers sold as a unit