Mass spectrometers and methods for analyzing a sample using a mass spectrometer are provided. The method includes applying a scan function to the ion trap including exciting at least a portion of the ions in the ion trap electively over time to fragment precursor ions into product ions and ejecting at least one of the product ions and the precursor ions from the ion trap. The mass spectrometer includes an ion trap and a controller configured to apply a scan function to the ion trap.
Pharmaceutical formulations that can include at least one genetically modified OPH enzyme are provided. Methods for treating chemical warfare agent exposure are also provided. Modified biomolecules are also provided.
The present disclosure provides electron source devices, electron source assemblies, and/or methods for generating electrons. The generated electrons can be used to facilitate spectroscopy, such as mass spectrometry, including mass selection or ion mobility.
SYSTEMS AND METHODS FOR IDENTIFYING THREATS AND LOCATIONS, SYSTEMS AND METHOD FOR AUGMENTING REAL-TIME DISPLAYS DEMONSTRATING THE THREAT LOCATION, AND SYSTEMS AND METHODS FOR RESPONDING TO THREATS
Systems for identifying threat materials such as CBRNE threats and locations are provided. The systems can include a data acquisition component configured to determine the presence of a CBRNE threat; data storage media; and processing circuitry operatively coupled to the data acquisition device and the storage media. Methods for identifying a CBRNE threat are provided. The methods can include: determining the presence of a CBRNE threat using a data acquisition component; and acquiring an image while determining the presence of the CBRNE threat. Methods for augmenting a real-time display to include the location and/or type of CBRNE threat previously identified are also provided. Methods for identifying and responding to CBRNE threats are provided as well.
G09G 5/397 - Arrangements specially adapted for transferring the contents of two or more bit-mapped memories to the screen simultaneously, e.g. for mixing or overlay
G09G 5/00 - Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
Techniques are disclosed for systems and methods for providing a wired connection between a ground-based robot and a controller. A cable handling system for a robot may include a base housing, a cable cartridge removably connected to the base housing, a control cable housed at least partially within the cable cartridge, and an outfeed assembly coupled to the base housing and configured to deploy the control cable from the cable cartridge. The control cable may be deployable from the cable cartridge to maintain a wired connection between the robot and a controller. The outfeed assembly may be configured to couple to a drive mechanism of the robot such that movement of the drive mechanism deploys the control cable from the cable cartridge. The outfeed assembly may be configured to deploy the control cable from the cable cartridge regardless of the direction of movement of the drive mechanism.
B65H 79/00 - Driving gear for devices for forwarding, winding, unwinding, or depositing material, not otherwise provided for
B25J 19/00 - Accessories fitted to manipulators, e.g. for monitoring, for viewingSafety devices combined with or specially adapted for use in connection with manipulators
A method for controlling an unmanned aerial vehicle within a flight operating space. The unmanned aerial vehicle includes one or more sensor arrays on each spar. The method includes determining, using a plurality of sensor arrays, a flight path for the unmanned aerial vehicle. The method also includes receiving, by at least one sensor array of the plurality of sensor arrays, sensor data identifying at least one object in the operating space. The sensor data is transmitted over a communications bus connecting components of the UAV. The method further includes determining, by one or more processors onboard the unmanned aerial vehicle, a flight path around the at least one object. The method also includes generating, by the one or more onboard processors, a first signal to cause the unmanned aerial vehicle to navigate within the operating space around the at least one object.
Radiation source localization systems and related techniques are provided to improve the operation of handheld or unmanned mobile sensor or survey platforms. A radiation source localization system includes a logic device configured to communicate with a communications module and a directional radiation detector, where the communications module is configured to establish a wireless communication link with a base station associated with the directional radiation detector and/or a mobile sensor platform, and the directional radiation detector includes a sensor assembly configured to provide directional radiation sensor data as the directional radiation detector is maneuvered within a survey area.
In an aspect, in general, a spooling apparatus includes a filament feeding mechanism for deploying and retracting filament from the spooling apparatus to an aerial vehicle, an exit geometry sensor for sensing an exit geometry of the filament from the spooling apparatus, and a controller for controlling the feeding mechanism to feed and retract the filament based on the exit geometry.
A method for unmanned delivery of an item to a desired delivery location includes receiving, at an unmanned vehicle, first data representative of an approximate geographic location of the desired delivery location, receiving, at the unmanned vehicle, second data representative of a fiducial expected to be detectable at the desired delivery location, using the first data to operate the unmanned vehicle to travel to the approximate geographic location of the desired delivery location, upon arriving at the approximate geographic location of the desired delivery location, using the second data to operate the unmanned vehicle to detect the fiducial; and upon detecting the fiducial, using the fiducial to operate the unmanned vehicle to deliver the item.
B64U 50/19 - Propulsion using electrically powered motors
B64U 101/30 - UAVs specially adapted for particular uses or applications for imaging, photography or videography
B64U 101/60 - UAVs specially adapted for particular uses or applications for transporting passengersUAVs specially adapted for particular uses or applications for transporting goods other than weapons
13.
Mounting a sensor module to an unmanned ground vehicle
An unmanned ground vehicle includes a main body, a drive system supported by the main body, a manipulator arm pivotally coupled to the main body, and a sensor module. The drive system includes right and left driven track assemblies mounted on right and left sides of the main body. The manipulator arm includes a first link coupled to the main body, an elbow coupled to the first link, and a second link coupled to the elbow. The elbow is configured to rotate independently of the first and second links. The sensor module is mounted on the elbow.
This specification describes systems for unmanned aerial vehicle carrying and deployment. In some examples, an unmanned vehicle includes a drive system and a chassis. The chassis includes a platform for carrying an unmanned aerial vehicle and a retainer configured to secure the unmanned aerial vehicle to the platform while the drive system drives the unmanned vehicle. The clamping system includes at least a first rotating bar and a protrusion from the first rotating bar.
The present teachings relate generally to a small remote vehicle having rotatable flippers and a weight of less than about 10 pounds and that can climb a conventional-sized stairs. The present teachings also relate to a small remote vehicle can be thrown or dropped fifteen feet onto a hard/inelastic surface without incurring structural damage that may impede its mission. The present teachings further relate to a small remote vehicle having a weight of less than about 10 pounds and a power source supporting missions of at least 6 hours.
B60L 50/52 - Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
B60L 58/12 - Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
B60L 58/21 - Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
B60L 58/26 - Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
B60L 50/60 - Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
G05D 1/00 - Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
A mobile robot includes a robot chassis having a forward end, a rearward end and a center of gravity. The robot includes a driven support surface to propel the robot and first articulated arm rotatable about an axis located rearward of the center of gravity of the robot chassis. The arm is pivotable to trail the robot, rotate in a first direction to raise the rearward end of the robot chassis while the driven support surface propels the chassis forward in surmounting an obstacle, and to rotate in a second opposite direction to extend forward beyond the center of gravity of the robot chassis to raise the forward end of the robot chassis and invert the robot endwise.
In an aspect, in general, a spooling apparatus includes a filament feeding mechanism for deploying and retracting filament from the spooling apparatus to an aerial vehicle, an exit geometry sensor for sensing an exit geometry of the filament from the spooling apparatus, and a controller for controlling the feeding mechanism to feed and retract the filament based on the exit geometry.
An unmanned ground vehicle includes a main body, a drive system supported by the main body, and a manipulator arm pivotally coupled to the main body. The drive system comprising right and left driven track assemblies mounted on right and left sides of the main body. The manipulator arm includes a gripper, a wrist motor configured for rotating the gripper, and an inline camera in a palm of the gripper. The inline camera is mechanically configured to remain stationary with respect to the manipulator arm while the wrist motor rotates the gripper.
Unmanned ground vehicles configured for compact manipulator stowing are disclosed. In some examples, an unmanned ground vehicle includes a main body and a drive system supported by the main body. The drive system includes right and left driven track assemblies mounted on right and left sides of the main body. A manipulator arm is pivotally coupled to the main body and configured to extend from a stowed position to an extended position, and the manipulator arm in the stowed position is contained entirely within a geometric volume of the right and left driven track assemblies.
A method for efficiently decontaminating surfaces is provided comprising applying an indicator to a surface wherein the indicator provides an observable or machine readable response when a contamination is present on the surface, wherein the response is located relative to a location of the contamination; and decontaminating the location of the contamination, and optionally rechecking the location of the initial contamination post decontamination to ensure that the surface is free of contamination.
A62D 3/30 - Processes for making harmful chemical substances harmless, or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
B08B 7/04 - Cleaning by methods not provided for in a single other subclass or a single group in this subclass by a combination of operations
B08B 3/02 - Cleaning by the force of jets or sprays
B08B 1/00 - Cleaning by methods involving the use of tools
B08B 13/00 - Accessories or details of general applicability for machines or apparatus for cleaning
B08B 3/08 - Cleaning involving contact with liquid the liquid having chemical or dissolving effect
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
A method for unmanned delivery of an item to a desired delivery location includes receiving, at an unmanned vehicle, first data representative of an approximate geographic location of the desired delivery location, receiving, at the unmanned vehicle, second data representative of a fiducial expected to be detectable at the desired delivery location, using the first data to operate the unmanned vehicle to travel to the approximate geographic location of the desired delivery location, upon arriving at the approximate geographic location of the desired delivery location, using the second data to operate the unmanned vehicle to detect the fiducial; and upon detecting the fiducial, using the fiducial to operate the unmanned vehicle to deliver the item.
Techniques are disclosed for systems and methods to provide reliable analyte spatial detection systems. An analyte spatial detection system includes an imaging module, a visible light projector, associated processing and control electronics, and, optionally, orientation and/or position sensors integrated with the imaging module and/or the visible light projector. The imaging module includes sensor elements configured to detect electromagnetic radiation in one or more selected spectrums, such as infrared, visible light, and/or other spectrums. The visible light projector includes one or more types of projectors configured project visible light within a spatial volume monitored by the imaging module. The system may be partially or completely portable and/or fixed in place. The visible light projector is used to indicate presence of a detected analyte on a surface near or adjoining the spatial position of the detected analyte.
G01N 21/94 - Investigating contamination, e.g. dust
G01N 21/88 - Investigating the presence of flaws, defects or contamination
G08B 5/36 - Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmissionVisible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electromagnetic transmission using visible light sources
23.
Efficient decontamination of personnel and objects
A method for efficiently decontaminating surfaces is provided comprising applying an indicator to a surface wherein the indicator provides an observable or machine readable response when a contamination is present on the surface, wherein the response is located relative to a location of the contamination; and decontaminating the location of the contamination, and optionally rechecking the location of the initial contamination post decontamination to ensure that the surface is free of contamination.