A linear actuator comprising a housing with a proximal end and a distal end, the housing defining a central cavity extending axially through the housing; a piston tube, where a first portion of the piston tube is slidably positioned axially in the housing, and a second portion of the piston tube extends outwardly from the distal end of the housing; an elongated rotatable screw positioned axially within the central cavity of the housing; a nut positioned within the housing and mounted about the screw, the nut configured to move axially within the housing as the screw rotates; and a spring positioned around the screw, the spring positioned within the housing between the nut and the piston tube; wherein the spring is configured to bias the piston tube away from the nut.
F16F 9/44 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium - Details such means combined with temperature correction
B60G 15/02 - Resilient suspensions characterised by arrangement, location, or type of combined spring and vibration- damper, e.g. telescopic type having mechanical spring
F15B 15/14 - Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith characterised by the construction of the motor unit of the straight-cylinder type
F16F 9/00 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
F16F 9/32 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium - Details
A linear actuator comprising a housing with a proximal end and a distal end, the housing defining a central cavity extending axially through the housing; a piston tube, where a first portion of the piston tube is slidably positioned axially in the housing, and a second portion of the piston tube extends outwardly from the distal end of the housing; an elongated rotatable screw positioned axially within the central cavity of the housing; a nut positioned within the housing and mounted about the screw, the nut configured to move axially within the housing as the screw rotates; and a spring positioned around the screw, the spring positioned within the housing between the nut and the piston tube; wherein the spring is configured to bias the piston tube away from the nut.
F16F 9/44 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium - Details such means combined with temperature correction
B60G 15/02 - Resilient suspensions characterised by arrangement, location, or type of combined spring and vibration- damper, e.g. telescopic type having mechanical spring
F16F 13/00 - Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
F16H 25/24 - Elements essential to such mechanisms, e.g. screws, nuts
Disclosed herein in an energy absorption device that incorporates a diverse range of uses within a single shock absorber. The disclosed energy absorption device is a novel combination of interaction between various components (e.g., piston head, shock tube, cylinder end, external cylinder, and adjustment mechanism) within a single shock absorber. When the components disclosed herein are considered together and designed as an interrelated assembly, the ability to incorporate such a diverse range of uses within a single device emerges. The ability to combine dashpot, square wave, progressive wave, and self-compensating damping in a single device is unprecedented, as is the ability to deliver sublinear damping force vs. input velocity performance in an adjustable device. The disclosed device allows a user to make simpler sizing calculations and decisions, and provides the user with the ability to adjust the shock absorber to a specific application, for example, with the turn of an adjustment knob.
F16F 9/346 - Throttling passages in the form of slots arranged in cylinder walls
F16F 9/44 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium - Details such means combined with temperature correction
F16F 9/48 - Arrangements for providing different damping effects at different parts of the stroke