A computing platform is configured to: (i) receive input data defining a geographic area within which to plan a segment of a mesh-based communication system; (ii) identify one or more originating sites within the geographic area; (iii) identify infrastructure sites within the geographic area that are candidates for installation of wireless communication nodes; (iv) obtain data related to the identified infrastructure sites that is to be used for planning; (v) generate a plan for the mesh-based communication system based at least on (a) the identified one or more originating site locations, (b) the identified infrastructure sites within the geographic area that are candidates for installation of wireless communication nodes, (c) the obtained data related to the identified infrastructure sites, and (d) a set of requirements for the plan; and (vi) output the generated plan.
A given wireless communication node of a wireless mesh network may include at least one processing unit and a plurality of radio modules, where at least one given radio module of the plurality of radio modules is capable of operating in a temporary network-sensing mode in which the given radio module gathers information about any other wireless communication node of the wireless mesh network that is sensed within the given wireless communication node's surrounding area by scanning for radio-frequency signals being emitted by any other radio module within at least a portion of the given wireless communication node's surrounding area while an antenna azimuth of the given radio module is being rotated.
A computing platform is configured to: based on fiber access data associated with a coverage area and a first set of line-of-sight (LOS) data associated with the coverage area, identify a plurality of locations for first-tier nodes; and for each respective first-tier node: (i) determine a plurality of geographic areas relative to the respective first-tier node for deploying spine nodes, wherein each determined geographic area is associated with a respective spine extending from the respective first-tier node; (ii) based on a second set of LOS data associated with the coverage area, identify a set of candidate spine node infrastructure sites for spine nodes extending from the respective first-tier node; and (iii) allocate the identified set of candidate spine node infrastructure sites into one or more subsets of infrastructure sites, wherein each subset of infrastructure sites corresponds to a given one of the determined geographic areas.
Systems and methods for monitoring and managing a mesh-based communication system include providing an interactive network map of a mesh-based communication system and wireless communication nodes of the mesh-based communication system, facilitating selection of and actioning for one or more of the wireless communication nodes, generating, managing, and visualizing alerts related to operation and performance of the mesh-based communication system, and evaluating operational performance of wireless communication nodes of the mesh-based communication system in order to identify points of failure and determine remedial action.
A computing platform is configured to: (i) receive input data identifying (a) planned infrastructure sites at which to install wireless communication nodes for a wireless mesh network, wherein each planned infrastructure site is associated with a respective wireless communication node to be installed at the planned infrastructure site and (b) planned interconnections between the planned infrastructure sites that specify a manner in which the wireless communication nodes of the planned infrastructure sites are to be interconnected together via wireless links; (ii) receive template data for defining a deployment plan for wireless communication nodes and wireless communication links; and (iii) based at least on the input data and the template data, generate a deployment plan for the planned infrastructure sites that comprises, for each planned infrastructure site, a respective set of configuration data for the respective wireless communication node to be installed at the planned infrastructure site.
In a wireless mesh network comprising wireless communication nodes that are interconnected via wireless point-to-point and/or wireless point-to-multipoint links, at least some of the wireless communication nodes may additionally be installed with equipment that enables them to operate as blockchain nodes within a blockchain network, such as a computing system comprising hardware and software for operating as part of the blockchain network. This architecture enables such wireless communication nodes to serve a dual purpose of delivering both mesh-based applications and/or services to users, such as high-speed internet, as well as blockchain-based applications and/or services to users. For example, such wireless communication nodes may function to provide distributed, blockchain-based platforms for content storage (e.g., blockchain-based databases or distributed file storage platforms), content distribution, social media, gaming, and/or virtual experiences, among other possibilities.
Disclosed herein are systems and methods that relate to wireless communication mesh network design and operation. In one aspect, the disclosed process may involve (1) obtaining potential-customer information related to a set of potential customers for a service to be provided through a wireless communication mesh network in an AOI, where the potential-customer information comprises both (i) information related to potential customers that are identified during a pre-marketing phase and (ii) information related to potential customers that are identified during a door-to-door marketing phase, and where the set of potential customers have a corresponding set of customer locations in the AOI, (2) evaluating the obtained potential-customer information and thereby identifying a subset of customer locations at which to deploy the wireless communication mesh network, and (3) generating and outputting information that facilitates deployment of the wireless communication mesh network at the identified subset of customer locations in the AOI.
H04W 16/20 - Network planning tools for indoor coverage or short range network deployment
G06V 10/25 - Determination of region of interest [ROI] or a volume of interest [VOI]
G06T 17/10 - Volume description, e.g. cylinders, cubes or using CSG [Constructive Solid Geometry]
G06V 10/26 - Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
A radio module for a wireless communication node comprises (i) a phased antenna array comprising a first set of antenna elements having a first polarization and a second set of antenna elements having a second polarization, (ii) a radio frequency (RF) module comprising a plurality of RF chains that are configured to feed the first and second sets of antenna elements in the phased antenna array, and (iii) a control unit that is configured to control an activation state of each antenna element in the phased antenna array. The radio module further comprises at least one beam narrowing module that is configured to (i) receive signals emitted by any active antenna element in the phased antenna array and (ii) consolidate the received signals into a respective narrow beam composite signal.
H04B 7/06 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
Disclosed herein is mesh relay module for relaying signals between nodes in a wireless mesh network. In one implementation, this mesh relay node may include a receiver front end comprising a receiver-side phased antenna array for receiving signals in one respective beam direction, a transmitter front end comprising a transmitter-side phased antenna array for transmitting signals in another respective beam direction, a communication interface, and circuitry that is configured to control the respective beam directions of the receiver and transmitter front ends and transfer signals between the receiver and transmitter front ends. Further, this mesh relay node may function to provide an indirect communication path between nodes within the wireless mesh network by (i) receiving signals from a first direction associated with a first node via the receiver front end and (ii) transmitting received signals in a second direction associated with a second node via the transmitter front end.
H04B 7/0408 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
H04B 7/06 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
H04B 7/08 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
H04W 40/24 - Connectivity information management, e.g. connectivity discovery or connectivity update
H04W 84/18 - Self-organising networks, e.g. ad hoc networks or sensor networks
H01Q 21/22 - Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
10.
EDGE COMPUTING PLATFORM BASED ON WIRELESS MESH ARCHITECTURE
Disclosed herein is an architecture for an edge computing platform based on an underlying wireless mesh network. The architecture includes nodes installed with equipment for operating as part of a wireless mesh network, including (1) a first tier of one or more Point of Presence (PoP) node, (2) a second tier of one or more seed nodes that are each directly connected to at least one PoP node via a PoP-to-seed wireless link, and (3) a third tier of one or more anchor nodes that are each connected to at least one seed node either (i) directly via a seed-to-anchor wireless link or (ii) indirectly via one or more intermediate anchor nodes, one or more anchor-to-anchor wireless links, and one seed-to-anchor wireless link, where at least one node in each of these tiers is further installed with equipment for operating as part of an edge computing platform.
An example mounting apparatus for a wireless communication node may comprise: a first weighting-element enclosure having a first set of connectors that extend from the first weighting-element enclosure; a second weighting-element enclosure having a second set of connectors that extend from the second weighting-element enclosure, and wherein the first weighting-element enclosure is connected to the second weighting-element enclosure via two joints that are disposed between the first set of connectors and the second set of connectors; a post that is affixed to either the first weighting-element enclosure or the second weighting-element enclosure; one or more communication-equipment enclosures that are each attached to the post and are each adapted to house respective equipment for the wireless communication node; and at least a first support strut that is connected between the post and a first one of the two joints disposed between the first weighting-element enclosure and the second weighting-element enclosure.