A wireless communication node of a wireless communication system may include a wireless communication module that is configured to communicate with a satellite (e.g., a low earth orbit satellite) and a mounting unit for mounting the wireless communication module at a ground-based installation site, where the mounting unit is configured to mechanically rotate the wireless communication module in response to receiving a command signal. Further, in at least some implementations, the wireless communication module may have electronic beamsteering capability.
A computing platform is configured to: (i) receive input data defining a geographic area within which to plan a segment of a mesh-based communication system; (ii) identify one or more originating sites within the geographic area; (iii) identify infrastructure sites within the geographic area that are candidates for installation of wireless communication nodes; (iv) obtain data related to the identified infrastructure sites that is to be used for planning; (v) generate a plan for the mesh-based communication system based at least on (a) the identified one or more originating site locations, (b) the identified infrastructure sites within the geographic area that are candidates for installation of wireless communication nodes, (c) the obtained data related to the identified infrastructure sites, and (d) a set of requirements for the plan; and (vi) output the generated plan.
A computing platform is configured to: (i) receive input data defining a geographic area within which to plan a segment of a mesh-based communication system; (ii) identify one or more originating sites within the geographic area; (iii) identify infrastructure sites within the geographic area that are candidates for installation of wireless communication nodes; (iv) obtain data related to the identified infrastructure sites that is to be used for planning; (v) generate a plan for the mesh-based communication system based at least on (a) the identified one or more originating site locations, (b) the identified infrastructure sites within the geographic area that are candidates for installation of wireless communication nodes, (c) the obtained data related to the identified infrastructure sites, and (d) a set of requirements for the plan; and (vi) output the generated plan.
Disclosed herein are systems and methods relating to wireless communication mesh networks. In one aspect, the disclosed systems and methods may involve (1) a preexisting fiber network associated with a geographical area that includes buildings, where the preexisting fiber network comprises preexisting fiber links, (2) a first fiber link that is spliced into a given one of the preexisting fiber links coupled to the preexisting fiber network at a given location that was identified as being convenient for extending the preexisting fiber network, (3) a second fiber link that is deployed between the given location and a given building that is closest to the given location, where the given building is configured to serve as a seed node of a wireless communication mesh network that has backhaul connectivity through the preexisting fiber network, and (4) one or more point-to-point or point-to-multipoint communication links that originate from the seed node.
A wireless communication node of a wireless communication system may include a wireless communication module that is configured to communicate with a satellite (e.g., a low earth orbit satellite) and a mounting unit for mounting the wireless communication module at a ground-based installation site, where the mounting unit is configured to mechanically rotate the wireless communication module in response to receiving a command signal. Further, in at least some implementations, the wireless communication module may have electronic beamsteering capability.
A given wireless communication node of a wireless mesh network may include at least one processing unit and a plurality of radio modules, where at least one given radio module of the plurality of radio modules is capable of operating in a temporary network-sensing mode in which the given radio module gathers information about any other wireless communication node of the wireless mesh network that is sensed within the given wireless communication node's surrounding area by scanning for radio-frequency signals being emitted by any other radio module within at least a portion of the given wireless communication node's surrounding area while an antenna azimuth of the given radio module is being rotated.
Disclosed herein is a wireless mesh network comprised of ultra-high-capacity nodes that are capable of establishing ultra-high-capacity links (e.g., point-to-point or point-to-multipoint bi-directional communication links) using a millimeter wave spectrum, including but not limited to 28 Ghz, 39 Ghz, 37/42 Ghz, 60 Ghz (including V band), or E-band frequencies, as examples. The higher capacity and/or extended range of these ultra-high-capacity nodes/links may be achieved via various advanced signal processing techniques. Further, these ultra-high-capacity nodes/links may be used in conjunction with other types of point-to-point and/or point-to-multipoint links to build a multi-layer wireless mesh network.
Disclosed herein is a first wireless communication node comprising a first communication module that includes a first baseband unit configured to handle baseband processing for the first communication module, a first RF unit configured to define a frequency range of radio signals for the first communication module, and a first antenna unit configured to generate a first extremely-narrow beam that facilitates exchange of radio signals with at least one other wireless communication node. The first wireless communication node may also comprise a second communication module that includes a second baseband unit configured to handle baseband processing for the second communication module, a second RF unit configured to define a frequency range of radio signals for the second communication module, and a second antenna unit configured to generate a second extremely-narrow beam that facilitates exchange of radio signals with at least one other wireless communication node.
H04B 7/0408 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
A computing platform is configured to: based on fiber access data associated with a coverage area and a first set of line-of-sight (LOS) data associated with the coverage area, identify a plurality of locations for first-tier nodes; and for each respective first-tier node: (i) determine a plurality of geographic areas relative to the respective first-tier node for deploying spine nodes, wherein each determined geographic area is associated with a respective spine extending from the respective first-tier node; (ii) based on a second set of LOS data associated with the coverage area, identify a set of candidate spine node infrastructure sites for spine nodes extending from the respective first-tier node; and (iii) allocate the identified set of candidate spine node infrastructure sites into one or more subsets of infrastructure sites, wherein each subset of infrastructure sites corresponds to a given one of the determined geographic areas.
A computing platform is configured to: based on fiber access data associated with a coverage area and a first set of line-of-sight (LOS) data associated with the coverage area, identify a plurality of locations for first-tier nodes; and for each respective first-tier node: (i) determine a plurality of geographic areas relative to the respective first-tier node for deploying spine nodes, wherein each determined geographic area is associated with a respective spine extending from the respective first-tier node; (ii) based on a second set of LOS data associated with the coverage area, identify a set of candidate spine node infrastructure sites for spine nodes extending from the respective first-tier node; and (iii) allocate the identified set of candidate spine node infrastructure sites into one or more subsets of infrastructure sites, wherein each subset of infrastructure sites corresponds to a given one of the determined geographic areas.
Disclosed herein are systems and methods related to wireless communication mesh network design, installation, and deployment. In one aspect, a wireless communication node may be located at a building to include one or more antenna mounts, one or more wireless communication radios mounted on the one or more antenna mounts, and a portable power supply coupled to each of the one or more wireless communication radios via a respective cable, where the portable power supply is configured to provide power to each of the one or more wireless communication radios. In another aspect, a wireless communication node located at a building may include a coaxial interface coupled to a power supply installed at the building via a pre-existing cable for a satellite dish, where the coaxial interface may receive power from the power supply via the pre-existing cable and supply the received power to one or more wireless communication radios
Systems and methods for monitoring and managing a mesh-based communication system include providing an interactive network map of a mesh-based communication system and wireless communication nodes of the mesh-based communication system, facilitating selection of and actioning for one or more of the wireless communication nodes, generating, managing, and visualizing alerts related to operation and performance of the mesh-based communication system, and evaluating operational performance of wireless communication nodes of the mesh-based communication system in order to identify points of failure and determine remedial action.
A computing platform is configured to: (i) receive input data identifying (a) planned infrastructure sites at which to install wireless communication nodes for a wireless mesh network, wherein each planned infrastructure site is associated with a respective wireless communication node to be installed at the planned infrastructure site and (b) planned interconnections between the planned infrastructure sites that specify a manner in which the wireless communication nodes of the planned infrastructure sites are to be interconnected together via wireless links; (ii) receive template data for defining a deployment plan for wireless communication nodes and wireless communication links; and (iii) based at least on the input data and the template data, generate a deployment plan for the planned infrastructure sites that comprises, for each planned infrastructure site, a respective set of configuration data for the respective wireless communication node to be installed at the planned infrastructure site.
Systems and methods for monitoring and managing mesh-based communication systems include providing an interactive network map of a mesh-based communication system and wireless communication nodes of the mesh-based communication system, facilitating selection of and actioning for one or more of the wireless communication nodes, generating, managing, and visualizing alerts related to operation and performance of the mesh-based communication system, and evaluating operational performance of wireless communication nodes of the mesh-based communication system in order to identify points of failure and determine remedial action.
Systems and methods for monitoring and managing mesh-based communication systems include providing an interactive network map of a mesh-based communication system and wireless communication nodes of the mesh-based communication system, facilitating selection of and actioning for one or more of the wireless communication nodes, generating, managing, and visualizing alerts related to operation and performance of the mesh-based communication system, and evaluating operational performance of wireless communication nodes of the mesh-based communication system in order to identify points of failure and determine remedial action.
H04L 67/12 - Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
H04W 84/18 - Self-organising networks, e.g. ad hoc networks or sensor networks
A computing platform is configured to: (i) receive input data identifying (a) planned infrastructure sites at which to install wireless communication nodes for a wireless mesh network, wherein each planned infrastructure site is associated with a respective wireless communication node to be installed at the planned infrastructure site and (b) planned interconnections between the planned infrastructure sites that specify a manner in which the wireless communication nodes of the planned infrastructure sites are to be interconnected together via wireless links; (ii) receive template data for defining a deployment plan for wireless communication nodes and wireless communication links; and (iii) based at least on the input data and the template data, generate a deployment plan for the planned infrastructure sites that comprises, for each planned infrastructure site, a respective set of configuration data for the respective wireless communication node to be installed at the planned infrastructure site.
In a wireless mesh network comprising wireless communication nodes that are interconnected via wireless point-to-point and/or wireless point-to-multipoint links, at least some of the wireless communication nodes may additionally be installed with equipment that enables them to operate as blockchain nodes within a blockchain network, such as a computing system comprising hardware and software for operating as part of the blockchain network. This architecture enables such wireless communication nodes to serve a dual purpose of delivering both mesh-based applications and/or services to users, such as high-speed internet, as well as blockchain-based applications and/or services to users. For example, such wireless communication nodes may function to provide distributed, blockchain-based platforms for content storage (e.g., blockchain-based databases or distributed file storage platforms), content distribution, social media, gaming, and/or virtual experiences, among other possibilities.
Disclosed herein is an architecture for an edge computing platform based on an underlying wireless mesh network. The architecture includes nodes installed with equipment for operating as part of a wireless mesh network, including (1) a first tier of one or more Point of Presence (PoP) node, (2) a second tier of one or more seed nodes that are each directly connected to at least one PoP node via a PoP-to-seed wireless link, and (3) a third tier of one or more anchor nodes that are each connected to at least one seed node either (i) directly via a seed-to-anchor wireless link or (ii) indirectly via one or more intermediate anchor nodes, one or more anchor-to-anchor wireless links, and one seed-to-anchor wireless link, where at least one node in each of these tiers is further installed with equipment for operating as part of an edge computing platform.
A radio module for a wireless communication node in a wireless mesh network includes a reflectarray antenna having a plurality of antenna elements. Each antenna element of the plurality of antenna elements is configured to receive an incident signal, apply one of two phase shifts to the incident signal, and radiate the phase-shifted signal. The radio module further includes a radio frequency (RF) module comprising a single RF chain configured to feed the incident signal to the plurality of antenna elements in the reflectarray antenna, as well as a control unit that is configured to control which of the two phase shifts is applied by each antenna element in the reflectarray antenna.
A wireless communication node within a mesh-based communication system includes wireless mesh equipment that is configured to establish and communicate over one or more bidirectional wireless links with one or more other wireless communication nodes of the mesh-based communication system. The wireless communication node further includes a multi-tier storage architecture that is configured to store data at the wireless communication node. The multi-tier storage architecture includes at least (i) a first tier of one or more storage units that is designated for storage of a first class of data, and (ii) a second tier of one or more storage units that is designated for storage of a second class of data that differs from the first class of data.
Disclosed herein are systems and methods that relate to wireless communication mesh network design and operation. In one aspect, the disclosed process may involve (1) obtaining potential-customer information related to a set of potential customers for a service to be provided through a wireless communication mesh network in an AOI, where the potential-customer information comprises both (i) information related to potential customers that are identified during a pre-marketing phase and (ii) information related to potential customers that are identified during a door-to-door marketing phase, and where the set of potential customers have a corresponding set of customer locations in the AOI, (2) evaluating the obtained potential-customer information and thereby identifying a subset of customer locations at which to deploy the wireless communication mesh network, and (3) generating and outputting information that facilitates deployment of the wireless communication mesh network at the identified subset of customer locations in the AOI.
H04W 16/20 - Network planning tools for indoor coverage or short range network deployment
G06V 10/25 - Determination of region of interest [ROI] or a volume of interest [VOI]
G06T 17/10 - Volume description, e.g. cylinders, cubes or using CSG [Constructive Solid Geometry]
G06V 10/26 - Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
A given wireless communication node of a wireless mesh network may include at least one processing unit and a plurality of radio modules, where at least one given radio module of the plurality of radio modules is capable of operating in a temporary network-sensing mode in which the given radio module gathers information about any other wireless communication node of the wireless mesh network that is sensed within the given wireless communication node's surrounding area by scanning for radio-frequency signals being emitted by any other radio module within at least a portion of the given wireless communication node's surrounding area while an antenna azimuth of the given radio module is being rotated.
A radio module for a wireless communication node comprises (i) a phased antenna array comprising a first set of antenna elements having a first polarization and a second set of antenna elements having a second polarization, (ii) a radio frequency (RF) module comprising a plurality of RF chains that are configured to feed the first and second sets of antenna elements in the phased antenna array, and (iii) a control unit that is configured to control an activation state of each antenna element in the phased antenna array. The radio module further comprises at least one beam narrowing module that is configured to (i) receive signals emitted by any active antenna element in the phased antenna array and (ii) consolidate the received signals into a respective narrow beam composite signal.
H04B 7/06 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
A radio module for a wireless communication node comprises (i) a phased antenna array comprising a first set of antenna elements having a first polarization and a second set of antenna elements having a second polarization, (ii) a radio frequency (RF) module comprising a plurality of RF chains that are configured to feed the first and second sets of antenna elements in the phased antenna array, and (iii) a control unit that is configured to control an activation state of each antenna element in the phased antenna array. The radio module further comprises at least one beam narrowing module that is configured to (i) receive signals emitted by any active antenna element in the phased antenna array and (ii) consolidate the received signals into a respective narrow beam composite signal.
H01Q 21/24 - Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
H01Q 19/02 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic - Details
Disclosed herein is a system comprising a set of wireless communication nodes that are configured to operate as part of a wireless mesh network. Each respective wireless communication node may be directly coupled to at least one other wireless communication node via a respective short-hop wireless link, and at least a first pair of wireless nodes may be both (a) indirectly coupled to one another via a first communication path that comprises one or more intermediary wireless communication nodes and two or more short-hop wireless links and (b) directly coupled to one another via a first long-hop wireless link that provides a second communication path between the first pair of wireless communication nodes having a lesser number of hops than the first communication path. A fiber access point may be directly coupled to a first wireless communication node of the set of wireless communication nodes.
H04B 10/2575 - Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
H04L 41/0816 - Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
H04L 41/12 - Discovery or management of network topologies
H04L 45/122 - Shortest path evaluation by minimising distances, e.g. by selecting a route with minimum of number of hops
Disclosed herein is a system comprising a set of wireless communication nodes that are configured to operate as part of a wireless mesh network. Each respective wireless communication node may be directly coupled to at least one other wireless communication node via a respective short-hop wireless link, and at least a first pair of wireless nodes may be both (a) indirectly coupled to one another via a first communication path that comprises one or more intermediary wireless communication nodes and two or more short-hop wireless links and (b) directly coupled to one another via a first long-hop wireless link that provides a second communication path between the first pair of wireless communication nodes having a lesser number of hops than the first communication path. A fiber access point may be directly coupled to a first wireless communication node of the set of wireless communication nodes.
H04L 41/12 - Discovery or management of network topologies
H04Q 11/00 - Selecting arrangements for multiplex systems
H04L 41/0816 - Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
H04W 84/18 - Self-organising networks, e.g. ad hoc networks or sensor networks
Disclosed herein is mesh relay module for relaying signals between nodes in a wireless mesh network. In one implementation, this mesh relay node may include a receiver front end comprising a receiver-side phased antenna array for receiving signals in one respective beam direction, a transmitter front end comprising a transmitter-side phased antenna array for transmitting signals in another respective beam direction, a communication interface, and circuitry that is configured to control the respective beam directions of the receiver and transmitter front ends and transfer signals between the receiver and transmitter front ends. Further, this mesh relay node may function to provide an indirect communication path between nodes within the wireless mesh network by (i) receiving signals from a first direction associated with a first node via the receiver front end and (ii) transmitting received signals in a second direction associated with a second node via the transmitter front end.
In a wireless mesh network comprising wireless communication nodes that are interconnected via wireless point-to-point and/or wireless point-to-multipoint links, at least some of the wireless communication nodes may additionally be installed with equipment that enables them to operate as blockchain nodes within a blockchain network, such as a computing system comprising hardware and software for operating as part of the blockchain network. This architecture enables such wireless communication nodes to serve a dual purpose of delivering both mesh-based applications and/or services to users, such as high-speed internet, as well as blockchain-based applications and/or services to users. For example, such wireless communication nodes may function to provide distributed, blockchain-based platforms for content storage (e.g., blockchain-based databases or distributed file storage platforms), content distribution, social media, gaming, and/or virtual experiences, among other possibilities.
Disclosed herein is a wireless mesh network comprised of ultra-high-capacity nodes that are capable of establishing ultra-high-capacity links (e.g., point-to-point or point-to-multipoint bi-directional communication links) using a millimeter wave spectrum, including but not limited to 28 Ghz, 39 Ghz, 37/42 Ghz, 60 Ghz (including V band), or E-band frequencies, as examples. The higher capacity and/or extended range of these ultra-high-capacity nodes/links may be achieved via various advanced signal processing techniques. Further, these ultra-high-capacity nodes/links may be used in conjunction with other types of point-to-point and/or point-to-multipoint links to build a multi-layer wireless mesh network.
H04W 24/02 - Arrangements for optimising operational condition
H04W 28/02 - Traffic management, e.g. flow control or congestion control
H04W 40/04 - Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
H04W 40/20 - Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
H04W 76/15 - Setup of multiple wireless link connections
H04W 84/02 - Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
H04W 84/22 - Self-organising networks, e.g. ad hoc networks or sensor networks with access to wired networks
H04W 88/10 - Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
Disclosed herein is mesh relay module for relaying signals between nodes in a wireless mesh network. In one implementation, this mesh relay node may include a receiver front end comprising a receiver-side phased antenna array for receiving signals in one respective beam direction, a transmitter front end comprising a transmitter-side phased antenna array for transmitting signals in another respective beam direction, a communication interface, and circuitry that is configured to control the respective beam directions of the receiver and transmitter front ends and transfer signals between the receiver and transmitter front ends. Further, this mesh relay node may function to provide an indirect communication path between nodes within the wireless mesh network by (i) receiving signals from a first direction associated with a first node via the receiver front end and (ii) transmitting received signals in a second direction associated with a second node via the transmitter front end.
H04B 7/0408 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
H04B 7/06 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
H04B 7/08 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
H04W 40/24 - Connectivity information management, e.g. connectivity discovery or connectivity update
H04W 84/18 - Self-organising networks, e.g. ad hoc networks or sensor networks
H01Q 21/22 - Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
31.
Systems and methods for designing and deploying wireless communication mesh networks
Disclosed herein are systems and methods that relate to wireless communication mesh network design and operation. In one aspect, the disclosed process may involve (1) obtaining potential-customer information related to a set of potential customers for a service to be provided through a wireless communication mesh network in an AOI, where the potential-customer information comprises both (i) information related to potential customers that are identified during a pre-marketing phase and (ii) information related to potential customers that are identified during a door-to-door marketing phase, and where the set of potential customers have a corresponding set of customer locations in the AOI, (2) evaluating the obtained potential-customer information and thereby identifying a subset of customer locations at which to deploy the wireless communication mesh network, and (3) generating and outputting information that facilitates deployment of the wireless communication mesh network at the identified subset of customer locations in the AOI.
G06V 10/25 - Determination of region of interest [ROI] or a volume of interest [VOI]
G06V 10/26 - Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
H04W 16/20 - Network planning tools for indoor coverage or short range network deployment
32.
EDGE COMPUTING PLATFORM BASED ON WIRELESS MESH ARCHITECTURE
Disclosed herein is an architecture for an edge computing platform based on an underlying wireless mesh network. The architecture includes nodes installed with equipment for operating as part of a wireless mesh network, including (1) a first tier of one or more Point of Presence (PoP) node, (2) a second tier of one or more seed nodes that are each directly connected to at least one PoP node via a PoP-to-seed wireless link, and (3) a third tier of one or more anchor nodes that are each connected to at least one seed node either (i) directly via a seed-to-anchor wireless link or (ii) indirectly via one or more intermediate anchor nodes, one or more anchor-to-anchor wireless links, and one seed-to-anchor wireless link, where at least one node in each of these tiers is further installed with equipment for operating as part of an edge computing platform.
Disclosed herein is a wireless communication node that includes (1) at least one small cell sub-node that is configured to communicate with multiple CPE sub-nodes outside of the wireless communication node via multiple first wide-beam-width communication links and (2) at least one CPE sub-node that is configured to communicate with one small cell sub-node outside of the wireless communication node via a second wide-beam-width communication link, where the at least one small cell sub-node and the at least one CPE communication sub-node are housed within a single enclosure. In some implementations, the wireless communication node may also support multiple carriers operating at different frequencies.
H04W 76/16 - Setup of multiple wireless link connections involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
H04W 84/10 - Small scale networks; Flat hierarchical networks
H04W 84/18 - Self-organising networks, e.g. ad hoc networks or sensor networks
H04W 24/04 - Arrangements for maintaining operational condition
H04B 7/06 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
Disclosed herein is an architecture for an edge computing platform based on an underlying wireless mesh network. The architecture includes nodes installed with equipment for operating as part of a wireless mesh network, including (1) a first tier of one or more Point of Presence (PoP) node, (2) a second tier of one or more seed nodes that are each directly connected to at least one PoP node via a PoP-to-seed wireless link, and (3) a third tier of one or more anchor nodes that are each connected to at least one seed node either (i) directly via a seed-to-anchor wireless link or (ii) indirectly via one or more intermediate anchor nodes, one or more anchor-to-anchor wireless links, and one seed-to-anchor wireless link, where at least one node in each of these tiers is further installed with equipment for operating as part of an edge computing platform.
Disclosed herein is a next generation communication system comprising a set of network nodes that are interconnected into a wireless mesh network, where a subset of the network nodes in the set are further coupled to a blockchain network that is configured to provide blockchain-based services, such as blockchain-based distributed data storage or a service for blockchain-based digital cryptocurrency mining.
H04L 29/08 - Transmission control procedure, e.g. data link level control procedure
G06Q 20/36 - Payment architectures, schemes or protocols characterised by the use of specific devices using electronic wallets or electronic money safes
H04W 84/18 - Self-organising networks, e.g. ad hoc networks or sensor networks
36.
MOUNTING APPARATUS FOR WIRELESS COMMUNICATION EQUIPMENT
An example mounting apparatus for a wireless communication node may comprise: a first weighting-element enclosure having a first set of connectors that extend from the first weighting-element enclosure; a second weighting-element enclosure having a second set of connectors that extend from the second weighting-element enclosure, and wherein the first weighting-element enclosure is connected to the second weighting-element enclosure via two joints that are disposed between the first set of connectors and the second set of connectors; a post that is affixed to either the first weighting-element enclosure or the second weighting-element enclosure; one or more communication-equipment enclosures that are each attached to the post and are each adapted to house respective equipment for the wireless communication node; and at least a first support strut that is connected between the post and a first one of the two joints disposed between the first weighting-element enclosure and the second weighting-element enclosure.
An example mounting apparatus for a wireless communication node may comprise: a first weighting-element enclosure having a first set of connectors that extend from the first weighting-element enclosure; a second weighting-element enclosure having a second set of connectors that extend from the second weighting-element enclosure, and wherein the first weighting-element enclosure is connected to the second weighting-element enclosure via two joints that are disposed between the first set of connectors and the second set of connectors; a post that is affixed to either the first weighting-element enclosure or the second weighting-element enclosure; one or more communication-equipment enclosures that are each attached to the post and are each adapted to house respective equipment for the wireless communication node; and at least a first support strut that is connected between the post and a first one of the two joints disposed between the first weighting-element enclosure and the second weighting-element enclosure.
Disclosed herein is a wireless mesh network comprised of ultra-high-capacity nodes that are capable of establishing ultra-high-capacity links (e.g., point-to-point or point-to-multipoint bi-directional communication links) using a millimeter wave spectrum, including but not limited to 28 Ghz, 39 Ghz, 37/42 Ghz, 60 Ghz (including V band), or E-band frequencies, as examples. The higher capacity and/or extended range of these ultra-high-capacity nodes/links may be achieved via various advanced signal processing techniques. Further, these ultra-high-capacity nodes/links may be used in conjunction with other types of point-to-point and/or point-to-multipoint links to build a multi-layer wireless mesh network.
H04W 24/02 - Arrangements for optimising operational condition
H04W 28/02 - Traffic management, e.g. flow control or congestion control
H04W 40/04 - Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
H04W 40/20 - Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
H04W 76/15 - Setup of multiple wireless link connections
H04W 84/02 - Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
H04W 84/22 - Self-organising networks, e.g. ad hoc networks or sensor networks with access to wired networks
H04W 88/10 - Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
Disclosed herein is a system comprising a set of wireless communication nodes that are configured to operate as part of a wireless mesh network. Each respective wireless communication node may be directly coupled to at least one other wireless communication node via a respective short-hop wireless link, and at least a first pair of wireless nodes may be both (a) indirectly coupled to one another via a first communication path that comprises one or more intermediary wireless communication nodes and two or more short-hop wireless links and (b) directly coupled to one another via a first long-hop wireless link that provides a second communication path between the first pair of wireless communication nodes having a lesser number of hops than the first communication path. A fiber access point may be directly coupled to a first wireless communication node of the set of wireless communication nodes.
H04L 41/12 - Discovery or management of network topologies
H04Q 11/00 - Selecting arrangements for multiplex systems
H04L 41/0816 - Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
H04W 84/18 - Self-organising networks, e.g. ad hoc networks or sensor networks
40.
Systems and methods for improving wireless network coverage
Disclosed herein are improved communication systems and methods for operating in a lightly-licensed, shared frequency spectrum. In one aspect, the disclosed systems and methods may involve a small cell having a coverage area and comprising a radio frequency integrated circuit (RFIC), a switch, an antenna, a power amplifier, and a low noise amplifier (LNA). A receiver RF chain of the small cell may be defined by an interconnection between the antenna, the switch, the LNA, and the RFIC, and a transmitter RF chain of the small cell may be defined by an interconnection between the RFIC, the power amplifier, the switch, and the antenna. In accordance with the present disclosure, the LNA may be configured with at least one parameter that is defined based on an uplink link-budget deficiency associated with a client terminal having a given power class and located at a given location of the coverage area.
Disclosed herein is a first wireless communication node comprising a first communication module that includes a first baseband unit configured to handle baseband processing for the first communication module, a first RF unit configured to define a frequency range of radio signals for the first communication module, and a first antenna unit configured to generate a first extremely-narrow beam that facilitates exchange of radio signals with at least one other wireless communication node. The first wireless communication node may also comprise a second communication module that includes a second baseband unit configured to handle baseband processing for the second communication module, a second RF unit configured to define a frequency range of radio signals for the second communication module, and a second antenna unit configured to generate a second extremely-narrow beam that facilitates exchange of radio signals with at least one other wireless communication node.
H04B 7/0408 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
H04L 12/24 - Arrangements for maintenance or administration
Disclosed herein is a system comprising a set of wireless communication nodes that are configured to operate as part of a wireless mesh network. Each respective wireless communication node may be directly coupled to at least one other wireless communication node via a respective short-hop wireless link, and at least a first pair of wireless nodes may be both (a) indirectly coupled to one another via a first communication path that comprises one or more intermediary wireless communication nodes and two or more short-hop wireless links and (b) directly coupled to one another via a first long-hop wireless link that provides a second communication path between the first pair of wireless communication nodes having a lesser number of hops than the first communication path. A fiber access point may be directly coupled to a first wireless communication node of the set of wireless communication nodes.
H04L 41/12 - Discovery or management of network topologies
H04Q 11/00 - Selecting arrangements for multiplex systems
H04L 41/0816 - Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
H04W 84/18 - Self-organising networks, e.g. ad hoc networks or sensor networks
43.
Systems and methods for improving wireless mesh networks
Disclosed herein is a first wireless communication node comprising a first communication module that includes a first baseband unit configured to handle baseband processing for the first communication module, a first RF unit configured to define a frequency range of radio signals for the first communication module, and a first antenna unit configured to generate a first extremely-narrow beam that facilitates exchange of radio signals with at least one other wireless communication node. The first wireless communication node may also comprise a second communication module that includes a second baseband unit configured to handle baseband processing for the second communication module, a second RF unit configured to define a frequency range of radio signals for the second communication module, and a second antenna unit configured to generate a second extremely-narrow beam that facilitates exchange of radio signals with at least one other wireless communication node.
H04B 7/0408 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
Disclosed herein are systems and methods related to wireless communication mesh network design, installation, and deployment. In one aspect, a wireless communication node may be located at a building to include one or more antenna mounts, one or more wireless communication radios mounted on the one or more antenna mounts, and a portable power supply coupled to each of the one or more wireless communication radios via a respective cable, where the portable power supply is configured to provide power to each of the one or more wireless communication radios. In another aspect, a wireless communication node located at a building may include a coaxial interface coupled to a power supply installed at the building via a pre-existing cable for a satellite dish, where the coaxial interface may receive power from the power supply via the pre-existing cable and supply the received power to one or more wireless communication radios.
Disclosed herein are systems and methods relating to wireless communication mesh networks. In one aspect, the disclosed systems and methods may involve (1) a preexisting fiber network associated with a geographical area that includes buildings, where the preexisting fiber network comprises preexisting fiber links, (2) a first fiber link that is spliced into a given one of the preexisting fiber links coupled to the preexisting fiber network at a given location that was identified as being convenient for extending the preexisting fiber network, (3) a second fiber link that is deployed between the given location and a given building that is closest to the given location, where the given building is configured to serve as a seed node of a wireless communication mesh network that has backhaul connectivity through the preexisting fiber network, and (4) one or more point-to-point or point-to-multipoint communication links that originate from the seed node.
Disclosed herein is a wireless mesh network comprised of ultra-high-capacity nodes that are capable of establishing ultra-high-capacity links (e.g., point-to-point or point-to-multipoint bi-directional communication links) using a millimeter wave spectrum, including but not limited to 28 Ghz, 39 Ghz, 37/42 Ghz, 60 Ghz (including V band), or E-band frequencies, as examples. The higher capacity and/or extended range of these ultra-high-capacity nodes/links may be achieved via various advanced signal processing techniques. Further, these ultra-high-capacity nodes/links may be used in conjunction with other types of point-to-point and/or point-to-multipoint links to build a multi-layer wireless mesh network.
H04W 24/02 - Arrangements for optimising operational condition
H04W 28/02 - Traffic management, e.g. flow control or congestion control
H04W 40/04 - Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
H04W 40/20 - Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
H04W 76/15 - Setup of multiple wireless link connections
H04W 84/02 - Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
H04W 84/22 - Self-organising networks, e.g. ad hoc networks or sensor networks with access to wired networks
H04W 88/10 - Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
Disclosed herein is a system comprising a set of wireless communication nodes that are configured to operate as part of a wireless mesh network. Each respective wireless communication node may be directly coupled to at least one other wireless communication node via a respective short-hop wireless link, and at least a first pair of wireless nodes may be both (a) indirectly coupled to one another via a first communication path that comprises one or more intermediary wireless communication nodes and two or more short-hop wireless links and (b) directly coupled to one another via a first long-hop wireless link that provides a second communication path between the first pair of wireless communication nodes having a lesser number of hops than the first communication path. A fiber access point may be directly coupled to a first wireless communication node of the set of wireless communication nodes.
Disclosed herein is a system comprising a first backhaul node, a second backhaul node, and multiple sites that each comprise a respective node configured to maintain a first communication link with the first backhaul node and a second communication link with the second backhaul node, operate in a first mode in which the respective node engages in communication with the first backhaul node over the first communication link and does not engage in communication with the second backhaul node over the second communication link, detect a triggering event associated with the first communication link, and in response to detecting the triggering event, dynamically switch from operating in the first mode to operating in a second mode in which the respective node engages in communication with the second backhaul node over the second communication link and does not engage in communication with the first backhaul node over the first communication link.
H04B 7/0408 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
Disclosed herein is a first wireless communication node comprising a first communication module that includes a first baseband unit configured to handle baseband processing for the first communication module, a first RF unit configured to define a frequency range of radio signals for the first communication module, and a first antenna unit configured to generate a first extremely-narrow beam that facilitates exchange of radio signals with at least one other wireless communication node. The first wireless communication node may also comprise a second communication module that includes a second baseband unit configured to handle baseband processing for the second communication module, a second RF unit configured to define a frequency range of radio signals for the second communication module, and a second antenna unit configured to generate a second extremely-narrow beam that facilitates exchange of radio signals with at least one other wireless communication node.
H04B 7/0408 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
H04L 12/24 - Arrangements for maintenance or administration