An endoluminal punch and introducer sheath are described wherein the endoluminal punch comprises a guidewire lumen through which a user is capable of placing a guidewire. The endoluminal punch system further comprises a mechanism affixed to the hub which is capable of controlling the axial positioning of the guidewire relative to the endoluminal punch distal end. The control mechanism can be released so that the endoluminal punch can be removed from a patient while retaining the guidewire in place within the patient. The endoluminal punch introducer, including a sheath and dilator, can comprise energy emitting electrodes or transducers for cutting larger size holes in stubborn (friable, scarred, or fibrotic) tissue. In other embodiments, the endoluminal punch can comprise a guidewire or stylet, wherein the guidewire or stylet is capable of emitting energy to cut through tissue.
A transvascularly placed steerable microcatheter, further including internal steerability and the ability to articulate in a direction at right angles to its longitudinal axis at or near its distal end. The steerable microcatheter is generally fabricated from stainless steel, nitinol, or other metal and includes an outer tube, an inner tube, hub structures, and a distal articulating region. The steerable microcatheter can be advanced through a body lumen in its straight configuration and then be selectively articulated or curved to permit negotiation of tortuous curvature. The microcatheter is especially suited to robotic or powered control applications with user intervention or using artificial intelligence (AI).
A transseptal needle or punch. The transseptal punch includes a stylet with a tube with a side window and a cutting wire disposed within the tube, with a sharp cutting segment disposed proximate the window. The sharp cutting segment can be expanded radially outwardly from the window by translation of the cutting wire proximal end within the tube.
An endoluminal needle or punch is describes wherein the distal end of the endoluminal needle is able to articulate laterally out of the longitudinal axis of the steerable endoluminal needle. The endoluminal needle further comprise a blunted distal end configuration that is minimally traumatic. Under control by the user, at the proximal end of the endoluminal needle, a sharp stylet can be advanced to punch tissue and then be retracted to maximize safety. The endoluminal needle is configured for use within an introducer.
An endoluminal punch system including a sheath and dilator. The endoluminal punch may include energy delivery system capable of being transmitted from the proximal end to the distal end of the endoluminal punch to assist with tissue crossing and incisions. The dilator may include selectively deployable cutting mechanism to create incisions in tissue that are larger than their basic external diameter. The system may also be configured to reduce the risk of generating plastic emboli during insertion of the endoluminal punch.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61M 29/00 - Dilators with or without means for introducing media, e.g. remedies
This invention is a transvascularly placed steerable guidewire, further including internal steerability and the ability to articulate in a direction at right angles to its longitudinal axis at or near its distal end. The steerable guidewire is generally fabricated from stainless steel and includes an outer tube, an inner tube, hub structures, and a distal articulating region. The steerable guidewire can be advanced through a body lumen in its straight configuration and then be selectively articulated or curved to permit negotiation of tortuous curvature. The steerable guidewire hub can be removed to permit advancement of catheters over its proximal end followed by re-attachment of the hub to permit deflection of the distal end of the steerable guidewire. Removal of the hub can result in a limp guidewire or maintenance of a forced curvature of the distal end of the guidewire.
A steerable endoluminal access device, such as a guidewire or guide catheter. The steerable endoluminal access device includes an inner tube within an outer tube, with the inner tube f ixed to the outer tube near the distal end of the device. The steerable endoluminal access device includes a releasably detachable hub for tensioning or compressing the inner tube relative to the outer tube.
A transvascularly placed steerable microcatheter, further including internal steerability and the ability to articulate in a direction at right angles to its longitudinal axis at or near its distal end. The steerable microcatheter is generally fabricated from stainless steel, nitinol, or other metal and includes an outer tube, an inner tube, hub structures, and a distal articulating region. The steerable microcatheter can be advanced through a body lumen in its straight configuration and then be selectively articulated or curved to permit negotiation of tortuous curvature. The microcatheter is especially suited to robotic or powered control applications with user intervention or using artif icial intelligence (Al ).
An endoluminal needle or punch is describes wherein the distal end of the endoluminal needle is able to articulate laterally out of the longitudinal axis of the steerable endoluminal needle. The endoluminal needle further comprise a blunted distal end configuration that is minimally traumatic. Under control by the user, at the proximal end of the endoluminal needle, a sharp stylet can be advanced to punch tissue and then be retracted to maximize safety. The endoluminal needle is configured for use within an introducer.
A transvascularly placed steerable microcatheter, further including internal steerability and the ability to articulate in a direction at right angles to its longitudinal axis at or near its distal end. The steerable microcatheter is generally fabricated from stainless steel, nitinol, or other metal and includes an outer tube, an inner tube, hub structures, and a distal articulating region. The steerable microcatheter can be advanced through a body lumen in its straight configuration and then be selectively articulated or curved to permit negotiation of tortuous curvature. The microcatheter is especially suited to robotic or powered control applications with user intervention or using artificial intelligence (AI).
An endoluminal punch and introducer sheath are described wherein the endoluminal punch comprises a guidewire lumen through which a user is capable of placing a guidewire. The endoluminal punch system further comprises a mechanism affixed to the hub which is capable of controlling the axial positioning of the guidewire relative to the endoluminal punch distal end. The control mechanism can be released so that the endoluminal punch can be removed from a patient while retaining the guidewire in place within the patient. The endoluminal punch introducer, including a sheath and dilator, can comprise energy emitting electrodes or transducers for cutting larger size holes in stubborn (friable, scarred, or fibrotic) tissue. In other embodiments, the endoluminal punch can comprise a guidewire or stylet, wherein the guidewire or stylet is capable of emitting energy to cut through tissue.
A steerable endoluminal access device, such as a guidewire or guide catheter. The steerable endoluminal access device includes an inner tube within an outer tube, with the inner tube fixed to the outer tube near the distal end of the device. The steerable endoluminal access device includes a releasably detachable hub for tensioning or compressing the inner tube relative to the outer tube.
An endoluminal punch and introducer sheath are described wherein the endoluminal punch comprises a guidewire lumen through which a user is capable of placing a guidewire. The endoluminal punch system further comprises a mechanism affixed to the hub which is capable of controlling the axial positioning of the guidewire relative to the endoluminal punch distal end. The control mechanism can be released so that the endoluminal punch can be removed from a patient while retaining the guidewire in place within the patient. The endoluminal punch introducer, including a sheath and dilator, can comprise energy emitting electrodes or transducers for cutting larger size holes in stubborn (friable, scarred, or fibrotic) tissue. In other embodiments, the endoluminal punch can comprise a guidewire or stylet, wherein the guidewire or stylet is capable of emitting energy to cut through tissue.
An endoluminal traversing system and tissue crossing system are described wherein the access systems are controlled by actuators that allow for robotic control of system functions. The robotic system can be configured for full manual control over the actuators, full computerized control, or a combination of human and computer (AI, neural net, rule set) guidance.
A transseptal needle or punch. The transseptal punch includes a stylet with a tube with a side window and a cutting wire disposed within the tube, with a sharp cutting segment disposed proximate the window. The sharp cutting segment can be expanded radially outwardly from the window by translation of the cutting wire proximal end within the tube.
A steerable guidewire. The steerable guidewire is fabricated includes an outer tube, an inner tube, a hub, and a distal articulating region. The steerable guidewire hub can be removed to permit advancement of catheters over its proximal end followed by re-attachment of the hub to permit deflection of the distal end of the steerable guidewire.
Medical and surgical catheters; Medical device, namely, a tele-robotic system consisting of a motorized catheter positioner having rotational and translational movement capability and a tele-robotic controller with rotation, translation and deflection control buttons, to facilitate remote catheterizations
An endoluminal punch and introducer sheath. The endoluminal punch includes a secondary blade, or fin blade affixed to the distal end of the endoluminal punch to increase the size of an incision.
An endoluminal punch system including a sheath and dilator. The endoluminal punch may include energy delivery system capable of being transmitted from the proximal end to the distal end of the endoluminal punch to assist with tissue crossing and incisions. The dilator may include selectively deployable cutting mechanism to create incisions in tissue that are larger than their basic external diameter. The system may also be configured to reduce the risk of generating plastic emboli during insertion of the endoluminal punch.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61B 17/00 - Surgical instruments, devices or methods
23.
Endoluminal punch system with cutting element and energy applicator
An endoluminal punch system including a sheath and dilator. The endoluminal punch may include energy delivery system capable of being transmitted from the proximal end to the distal end of the endoluminal punch to assist with tissue crossing and incisions. The dilator may include selectively deployable cutting mechanism to create incisions in tissue that are larger than their basic external diameter. The system may also be configured to reduce the risk of generating plastic emboli during insertion of the endoluminal punch.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61B 17/00 - Surgical instruments, devices or methods
Methods for performing certain medical procedures wherein a steerable endoluminal punch is used to not only gain access but to create a channel or punch through tissue, thus facilitating follow-up therapeutic procedures. The distal end of the steerable endoluminal punch is controllably articulated by the operator using a control device at the proximal end.
A61B 17/00 - Surgical instruments, devices or methods
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
An endoluminal punch system including a sheath and dilator. The endoluminal punch may include energy delivery system capable of being transmitted from the proximal end to the distal end of the endoluminal punch to assist with tissue crossing and incisions. The dilator may include selectively deployable cutting mechanism to create incisions in tissue that are larger than their basic external diameter. The system may also be configured to reduce the risk of generating plastic emboli during insertion of the endoluminal punch.
An endoluminal punch with a penetrating stylet and a vibration generator. The vibration generator is operable to cause vibrations and rapid reciprocation of the distal tip of the stylet to facilitate penetration of the stylet through resistant body tissue such as the fossa ovalis. The vibration generator may also be operable to cause vibration of the distal tip of the punch itself, to facilitate passage of the punch through an initial perforation created by the stylet.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
Methods for performing certain medical procedures wherein a steerable endoluminal punch is used to not only gain access but to create a channel or punch through tissue, thus facilitating follow-up therapeutic procedures. The distal end of the steerable endoluminal punch is controllably articulated by the operator using a control device at the proximal end.
A61B 17/00 - Surgical instruments, devices or methods
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
This invention is a transvascularly placed steerable guidewire, further including internal steerability and the ability to articulate in a direction at right angles to its longitudinal axis at or near its distal end. The steerable guidewire is generally fabricated from stainless steel and includes an outer tube, an inner tube, hub structures, and a distal articulating region. The steerable guidewire can be advanced through a body lumen in its straight configuration and then be selectively articulated or curved to permit negotiation of tortuous curvature. The steerable guidewire hub can be removed to permit advancement of catheters over its proximal end followed by re-attachment of the hub to permit deflection of the distal end of the steerable guidewire. Removal of the hub can result in a limp guidewire or maintenance of a forced curvature of the distal end of the guidewire.
An endoluminal needle or punch is describes wherein the distal end of the endoluminal needle is able to articulate laterally out of the longitudinal axis of the steerable endoluminal needle. The endoluminal needle further comprise a blunted distal end configuration that is minimally traumatic. Under control by the user, at the proximal end of the endoluminal needle, a sharp stylet can be advanced to punch tissue and then be retracted to maximize safety. The endoluminal needle is configured for use within an introducer.
An endoluminal punch system including a sheath and dilator. The endoluminal punch may include energy delivery system capable of being transmitted from the proximal end to the distal end of the endoluminal punch to assist with tissue crossing and incisions. The dilator may include selectively deployable cutting mechanism to create incisions in tissue that are larger than their basic external diameter. The system may also be configured to reduce the risk of generating plastic emboli during insertion of the endoluminal punch.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61B 17/00 - Surgical instruments, devices or methods
A transseptal needle or punch is described wherein the distal end of the transseptal needle is able to articulate laterally out of the longitudinal axis of the steerable transseptal needle. The transseptal needle includes a blunted distal end configuration that is minimally traumatic. Under control by the user or a computer, the transseptal needle can be articulated to generate various curves with high bending force. The transseptal needle is configured for use with an introducer which can also include side windows.
An endoluminal punch with distal end configured to articulate laterally away from the longitudinal axis of the endoluminal punch. The transseptal needle is configured for use with an introducer which can also include side windows.
An endoluminal needle or punch is describes wherein the distal end of the endoluminal needle is able to articulate laterally out of the longitudinal axis of the steerable endoluminal needle. The endoluminal needle further comprise a blunted distal end configuration that is minimally traumatic. Under control by the user, at the proximal end of the endoluminal needle, a sharp stylet can be advanced to punch tissue and then be retracted to maximize safety. The endoluminal needle is configured for use within an introducer.
A transseptal punch with a steering mechanism within the punch, such that punch can be steered and deflected within a guide catheter during delivery, to avoid skiving of the guide catheter inner wall by passage of the punch tip through the guide catheter. The punch can be advanced through a body lumen in its straight configuration and then be selectively articulated or curved to permit negotiation of tortuous curvature or to permit optimal approach or access to a puncture site. The punch is able to create holes in the atrial septum of the heart or other structures and is easier to use than punches that are pre-curved near their distal tip since it is easier to advance through accessory catheters.
A steerable guidewire. The steerable guidewire is fabricated includes an outer tube, an inner tube, a hub, and a distal articulating region. The steerable guidewire hub can be removed to permit advancement of catheters over its proximal end followed by re-attachment of the hub to permit deflection of the distal end of the steerable guidewire.
A transseptal needle or punch is described wherein the distal end of the transseptal needle is able to articulate laterally out of the longitudinal axis of the steerable transseptal needle. The transseptal needle includes a blunted distal end configuration that is minimally traumatic. Under control by the user or a computer, the transseptal needle can be articulated to generate various curves with high bending force. The transseptal needle is configured for use with an introducer which can also include side windows.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
This invention is a transvascularly placed steerable guidewire, further including internal steerability and the ability to articulate in a direction at right angles to its longitudinal axis at or near its distal end. The steerable guidewire is generally fabricated from stainless steel and includes an outer tube, an inner tube, hub structures, and a distal articulating region. The steerable guidewire can be advanced through a body lumen in its straight configuration and then be selectively articulated or curved to permit negotiation of tortuous curvature. The steerable guidewire hub can be removed to permit advancement of catheters over its proximal end followed by re-attachment of the hub to permit deflection of the distal end of the steerable guidewire. Removal of the hub can result in a limp guidewire or maintenance of a forced curvature of the distal end of the guidewire.
A transseptal needle or punch wherein the distal end of the transseptal needle is able to articulate laterally out of the longitudinal axis of the steerable transseptal needle. The transseptal needle further comprise a blunted distal end configuration that is minimally traumatic. Under control by the user or a computer, at the proximal end of the transseptal needle can be articulated to generate various curves with high bending force. The transseptal needle is configured for use within a transseptal introducer.
A transseptal punch with a steering mechanism within the punch, such that punch can be steered and deflected within a guide catheter during delivery, to avoid skiving of the guide catheter inner wall by passage of the punch tip through the guide catheter. The punch can be advanced through a body lumen in its straight configuration and then be selectively articulated or curved to permit negotiation of tortuous curvature or to permit optimal approach or access to a puncture site. The punch is able to create holes in the atrial septum of the heart or other structures and is easier to use than punches that are pre-curved near their distal tip since it is easier to advance through accessory catheters.
An endoluminal needle or punch is describes wherein the distal end of the endoluminal needle is able to articulate laterally out of the longitudinal axis of the steerable endoluminal needle. The endoluminal needle further comprise a blunted distal end configuration that is minimally traumatic. Under control by the user, at the proximal end of the endoluminal needle, a sharp stylet can be advanced to punch tissue and then be retracted to maximize safety. The endoluminal needle is configured for use within an introducer.
A steerable guidewire. The steerable guidewire is fabricated includes an outer tube, an inner tube, a hub, and a distal articulating region. The steerable guidewire hub can be removed to permit advancement of catheters over its proximal end followed by re-attachment of the hub to permit deflection of the distal end of the steerable guidewire.
A steerable guide wire. The steerable guide wire is fabricated includes an outer tube, an inner tube, a hub, and a distal articulating region. The steerable guide wire hub can be removed to permit advancement of catheters over its proximal end followed by re- attachment of the hub to permit deflection of the distal end of the steerable guide wire.
A transseptal punch with a steering mechanism within the punch, such that punch can be steered and deflected within a guide catheter during delivery, to avoid skiving of the guide catheter inner wall by passage of the punch tip through the guide catheter. The punch can be advanced through a body lumen in its straight configuration and then be selectively articulated or curved to permit negotiation of tortuous curvature or to permit optimal approach or access to a puncture site. The punch is able to create holes in the atrial septum of the heart or other structures and is easier to use than punches that are pre-curved near their distal tip since it is easier to advance through accessory catheters.
A steerable transseptal punch. An inner tube disposed within an outer tube of the punch as a distal tip adapted to pierce body tissue. To provide column strength necessary to punch through tissue while providing flexibility and steering necessary to reach and oppose body tissue such as the atrial septum, the inner tube and the outer tube have flexible regions at the distal end of the punch, and the inner tube is fixed to the outer tube at a point near the distal end of flexible region of the outer tube. The flexible region of the outer tube can be formed with radial slots, and the flexible region of the inner tube can be formed with a longitudinal slot.
A61M 25/088 - Introducing, guiding, advancing, emplacing or holding catheters using an additional catheter, e.g. to reach relatively inaccessible places
A61M 25/092 - Remote control of the orientation of the distal end
A61M 25/092 - Remote control of the orientation of the distal end
A61M 25/088 - Introducing, guiding, advancing, emplacing or holding catheters using an additional catheter, e.g. to reach relatively inaccessible places
This invention is a transvascularly placed punch, further including internal steerability and the ability to articulate in a direction at right angles to its longitudinal axis at or near its distal end. The punch is generally fabricated from stainless steel and includes an outer tube, an intermediate tube, a central stylet, hub structures, and a distal articulating region. The punch can be advanced through a body lumen in its straight configuration and then be selectively articulated or curved to permit negotiation of tortuous curvature or to permit optimal approach or access to a puncture site. The punch is able to create holes in the atrial septum of the heart or other structures and is easier to use than punches that are pre-curved near their distal tip since it is easier to advance through accessory catheters.