A spring brake actuator assembly for actuating a brake includes a spring chamber and a service chamber. A central flange defines opposing first and second cup-shaped sections. A spring chamber housing is interconnected to the first cup-shaped section of the central flange case for defining a spring chamber. A reciprocating piston is disposed in the spring chamber and includes a tubular push rod being biased into the service chamber from the spring chamber by a power spring disposed between the spring chamber housing and the reciprocating piston. The spring chamber is sealably bifurcated into a spring portion and a brake release portion. The brake release portion is subject to pneumatic pressure for compressing the power spring disposed in the spring chamber, A service flexible diaphragm defines the service chamber that is also subject to pneumatic pressure for driving a push rod outwardly of the service chamber to actuate a brake.
A brake monitoring assembly and method for monitoring a brake system of a train includes a plurality of train bogeys supporting each train car, each bogey having a wheel axle supporting wheels engaging a train track. Each wheel axle includes a tread brake and a disc brake. A tread brake actuator includes an extendable tread brake pushrod for actuating the tread brake. A disc brake actuator includes an extendable disc brake pushrod for actuating the disc brake. A pneumatic system provides pneumatic pressure for actuating the brakes and includes a sensor for monitoring pressure. Each brake actuator includes a sensor for detecting length of extension of a pushrod. A controller identifies a condition of the actuators when the pressure detected by the sensor is inconsistent with a length of extension of any of the pushrods and signals an indicator for indicating a condition of the actuators.
A vehicle brake monitor assembly for an air disk brake includes a brake actuator having a pushrod projecting from inside a chamber of said brake actuator. The pushrod releasably actuates a lever arm of a caliper thereby moving the disk brake into a braking position when the pushrod is in an extended position and releasing the disk brake from the braking position when the pushrod is in a retracted position. The pushrod includes a pushrod shaft and a contact member biased in a telescoping relationship relative to the pushrod shaft and the lever arm of the caliper abuts the contact member counteracting the bias of the contact member. A sensor is integrated with the assembly proximate the contact member and detects movement of the pushrod relative to the lever arm and to the pushrod shaft.
A method of monitoring lateral force of a coil spring having a body and opposing end coils is disclosed. A fixture includes a base defining a planar surface with a shaft that extends from said planar surface at a normal angle to said planar surface. An axis defined by the coil spring is aligned with the shaft. Angular displacement from the shaft of an end coil is measured, and the angular displacement is correlated with a lateral force value.
A brake actuator assembly for an air disk brake includes an actuator housing having a pushrod that is extensible from the actuator housing. A lever arm is disposed inside a caliper housing. The lever arm is actuated by the pushrod for transferring motion from the actuator to a brake pad. A sensor element is disposed between the actuator housing and the caliper housing with the sensor element being sealably engaged to the actuator housing providing an air tight enclosure between the caliper housing and the actuator. An inspection port is disposed in the sensor element providing access to receive a visual sensor and a pressure sensor for identifying a condition of the brake actuator and for identifying a condition of the air tight enclosure.
A vehicle brake monitor assembly for an air disk brake includes a brake actuator having a pushrod projecting from inside a chamber of said brake actuator. The pushrod releasably actuates a lever arm of a caliper thereby moving the disk brake into a braking position when the pushrod is in an extended position and releasing the disk brake from the braking position when the pushrod is in a retracted position. The pushrod includes a pushrod shaft and a contact member biased in a telescoping relationship relative to the pushrod shaft and the lever arm of the caliper abuts the contact member counteracting the bias of the contact member. A sensor is integrated with the assembly proximate the contact member and detects movement of the pushrod relative to the lever arm and to the pushrod shaft.
A vehicle brake monitor assembly for an air disk brake includes a brake actuator having a pushrod projecting from inside a chamber of said brake actuator. The pushrod releasably actuates a lever arm of a caliper thereby moving the disk brake into a braking position when the pushrod is in an extended position and releasing the disk brake from the braking position when the pushrod is in a retracted position. The pushrod includes a pushrod shaft and a contact member biased in a telescoping relationship relative to the pushrod shaft and the lever arm of the caliper abuts the contact member counteracting the bias of the contact member. A sensor is integrated with the assembly proximate the contact member and detects movement of the pushrod relative to the lever arm and to the pushrod shaft.
A brake monitoring system and method for a vehicle having multiple axles and a plurality of brake actuators and an engine control module, each brake actuator being associated with one of the axle. The system include sensors for measuring, in real-time, brake pressure and brake lining wear, and generating first and second signals. The first and second signals are received and stored in a chassis communications module. The chassis communications module detects fault condition of the brakes as a function of the first and/or second signals and for recording the fault condition, the fault condition being one of a brake monitor warning and a brake lining warning and provides an indication of status via warning lights.
B60Q 11/00 - Arrangement of monitoring devices for devices provided for in groups
B60T 17/22 - Devices for monitoring or checking brake systemsSignal devices
B60W 10/04 - Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
B60W 10/184 - Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
B60W 10/188 - Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
A vehicle brake monitor assembly for an air disk brake includes a brake actuator having a pushrod projecting from inside a chamber of said brake actuator. The pushrod releasably actuates a lever arm of a caliper thereby moving the disk brake into a braking position when the pushrod is in an extended position and releasing the disk brake from the braking position when the pushrod is in a retracted position. The pushrod includes a pushrod shaft and a contact member biased in a telescoping relationship relative to the pushrod shaft and the lever arm of the caliper abuts the contact member counteracting the bias of the contact member. A sensor is integrated with the assembly proximate the contact member and detects movement of the pushrod relative to the lever arm and to the pushrod shaft.
A vehicle brake monitor assembly for an air disk brake includes a brake actuator having a pushrod projecting from inside a chamber of said brake actuator. The pushrod releasably actuates a lever arm of a caliper thereby moving the disk brake into a braking position when the pushrod is in an extended position and releasing the disk brake from the braking position when the pushrod is in a retracted position. The pushrod includes a pushrod shaft and a contact member biased in a telescoping relationship relative to the pushrod shaft and the lever arm of the caliper abuts the contact member counteracting the bias of the contact member. A sensor is integrated with the assembly proximate the contact member and detects movement of the pushrod relative to the lever arm and to the pushrod shaft.
A brake monitoring system and method for a vehicle having multiple axles and a plurality of brake actuators and an engine control module, each brake actuator being associated with one of the axle. The system include sensors for measuring, in real-time, brake pressure and brake lining wear, and generating first and second signals. The first and second signals are received and stored in a chassis communications module. The chassis communications module detects fault condition of the brakes as a function of the first and/or second signals and for recording the fault condition, the fault condition being one of a brake monitor warning and a brake lining warning and provides an indication of status via warning lights.
B60Q 1/00 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
B60T 13/74 - Transmitting braking action from initiating means to ultimate brake actuator with power assistance or driveBrake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
F16D 66/00 - Arrangements for monitoring working conditions of brakes, e.g. wear or temperature
B60T 8/88 - Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
An improved diaphragm-type pneumatic brake actuator includes a flange case, a cover cooperable with the flange case, a flexible diaphragm extending between the flange case and the cover forming a lower pneumatic chamber and an upper pneumatic chamber on opposed sides of the diaphragm. A piston assembly is disposed in the cover for moving a spring between compressed and decompressed positions. A spring guide is disposed between the cover and the piston assembly in the upper chamber. The spring guide prevents direct contact of the spring with the cover to prevent formation of a corrosion cell.