The present invention relates to a smart system for interlocked tilting and opening/closing of a sky awning, the system being implemented such that the canopy of a sky awning can be opened/closed by using a worm gear structure. The system comprises: a first rail frame fixed to a pillar or a wall surface; and a second rail frame facing the first rail frame and fixed to a pillar or a wall surface.
Disclosed is an optical scope including an objective lens, an eyepiece lens, and a reticle, wherein a field lens having negative power is disposed in at least one of a front and a back of the reticle disposed on an image formation surface of the objective lens to increase eye-relief.
F41G 1/38 - Telescopic sights specially adapted for smallarms or ordnanceSupports or mountings therefor
G02B 17/04 - Catoptric systems, e.g. image erecting and reversing system using prisms only
G02B 23/00 - Telescopes, e.g. binocularsPeriscopesInstruments for viewing the inside of hollow bodiesViewfindersOptical aiming or sighting devices
G02B 23/02 - Telescopes, e.g. binocularsPeriscopesInstruments for viewing the inside of hollow bodiesViewfindersOptical aiming or sighting devices involving prisms or mirrors
Disclosed is an optical scope including an objective lens, an eyepiece lens, and a reticle, wherein a field lens having negative power is disposed in at least one of a front and a back of the reticle disposed on an image formation surface of the objective lens to increase eye-relief.
F41G 1/38 - Telescopic sights specially adapted for smallarms or ordnanceSupports or mountings therefor
G02B 23/00 - Telescopes, e.g. binocularsPeriscopesInstruments for viewing the inside of hollow bodiesViewfindersOptical aiming or sighting devices
G02B 17/04 - Catoptric systems, e.g. image erecting and reversing system using prisms only
G02B 23/02 - Telescopes, e.g. binocularsPeriscopesInstruments for viewing the inside of hollow bodiesViewfindersOptical aiming or sighting devices involving prisms or mirrors
A dot-sighting device includes a light source, a beam splitter and a reflective element. The light source emits light. The beam splitter includes a surface that reflects at least a portion of a first light component of the light and transmits at least a portion of a second light component. The reflective element reflects at least a portion of the first light component reflected by the surface of the beam splitter toward the beam splitter. The light reflected by the reflective element includes the second light component.
A dot-sighting device includes a light source, a beam splitter and a reflective element. The light source emits light. The beam splitter includes a surface that reflects at least a portion of a first light component of the light and transmits at least a portion of a second light component. The reflective element reflects at least a portion of the first light component reflected by the surface of the beam splitter toward the beam splitter. The light reflected by the reflective element includes the second light component.
Disclosed is an automatic correction apparatus for a trajectory of a projectile from a firearm of which a sight and a gun barrel are installed in parallel, the apparatus including: a distance measurer which is installed in parallel with the sight and measures distance from a target to be hit; a central processing unit which calculates a correction value for parallelization between the gun barrel and the sight so that a trajectory curve and the target can intersect with each other on the basis of the distance measured by the distance measurer; and a parallelization adjuster which connects the sight and the gun barrel and adjusts axial parallelization between a sight line of the sight and the gun barrel on the basis of the parallelization correction value calculated by the central processing unit. With this, the trajectory of the projectile is automatically corrected in accordance with the distance from the target, and thus quick and correct aiming and firing are possible.
G06G 7/80 - Analogue computers for specific processes, systems, or devices, e.g. simulators for gun-layingAnalogue computers for specific processes, systems, or devices, e.g. simulators for bomb aimingAnalogue computers for specific processes, systems, or devices, e.g. simulators for guiding missiles
A dot-sighting device includes a light source, a beam splitter and a reflective element. The light source emits light. The beam splitter includes a surface that reflects at least a portion of a first light component of the light and transmits at least a portion of a second light component. The reflective element reflects at least a portion of the first light component reflected by the surface of the beam splitter toward the beam splitter. The light reflected by the reflective element includes the second light component.
A dot sight includes a base, a housing, a reflective element, an emitter, a horizontal adjusting portion and a vertical adjusting portion. The housing is coupled to the base. The reflective element is coupled to the housing. The emitter provides a reticle image to the reflective element. The reflective element reflects at least a portion of the reticle image. The emitter is coupled to the housing. The horizontal adjusting portion adjusts a position of the housing relative to the base. The vertical adjusting portion adjusts a position of the housing relative to the base.
A dot-sighting device includes a light source, a beam splitter and a reflective element. The light source emits light. The beam splitter includes a surface that reflects at least a portion of a first light component of the light and transmits at least a portion of a second light component. The reflective element reflects at least a portion of the first light component reflected by the surface of the beam splitter toward the beam splitter. The light reflected by the reflective element includes the second light component.
Disclosed is an optical scope including an objective lens, an eyepiece lens, and a reticle, wherein a field lens having negative power is disposed in at least one of a front and a back of the reticle disposed on an image formation surface of the objective lens to increase eye-relief.
F41G 1/38 - Telescopic sights specially adapted for smallarms or ordnanceSupports or mountings therefor
G02B 23/00 - Telescopes, e.g. binocularsPeriscopesInstruments for viewing the inside of hollow bodiesViewfindersOptical aiming or sighting devices
G02B 23/10 - Telescopes, e.g. binocularsPeriscopesInstruments for viewing the inside of hollow bodiesViewfindersOptical aiming or sighting devices involving prisms or mirrors reflecting into the field of view additional indications, e.g. from collimator
G02B 17/04 - Catoptric systems, e.g. image erecting and reversing system using prisms only
11.
Automatic correction apparatus for trajectory of a projectile and correction method using the same
Disclosed is an automatic correction apparatus for a trajectory of a projectile from a firearm of which a sight and a gun barrel are installed in parallel, the apparatus including: a distance measurer which is installed in parallel with the sight and measures distance from a target to be hit; a central processing unit which calculates a correction value for parallelization between the gun barrel and the sight so that a trajectory curve and the target can intersect with each other on the basis of the distance measured by the distance measurer; and a parallelization adjuster which connects the sight and the gun barrel and adjusts axial parallelization between a sight line of the sight and the gun barrel on the basis of the parallelization correction value calculated by the central processing unit. With this, the trajectory of the projectile is automatically corrected in accordance with the distance from the target, and thus quick and correct aiming and firing are possible.
G06G 7/80 - Analogue computers for specific processes, systems, or devices, e.g. simulators for gun-layingAnalogue computers for specific processes, systems, or devices, e.g. simulators for bomb aimingAnalogue computers for specific processes, systems, or devices, e.g. simulators for guiding missiles
Disclosed is a trajectory correction apparatus arranged between a firearm and a sight, the trajectory correction apparatus including: a trajectory correction device which includes a mount mounted to a firearm body, a moving body having a projection at one side and arranged on an upper side of the mount, a joint shaft rotatably inserted in the moving body, a rotation shaft penetrating in a direction perpendicularly intersecting the joint shaft and installed to the mount, an adjusting member adjusting a vertical rotation angle of the moving body, and a guide plate obliquely formed thereon with a guide groove, in which the projection is inserted, and fastened to one side of the mount to horizontally rotate the moving body as the moving body vertically rotates.