In a method for operating a plasma installation, an induction heating installation or a laser excitation installation in a pulsed power output operation, includes controlling at least one semiconductor switching element to produce a power loss in the at least one semiconductor switching element during a pulse pause time period in a pulse pause operation during which no power suitable for the ignition or the operation of the plasma process, the induction heating process, or the laser excitation process is produced at a power output of a power generator by the at least one semiconductor switching element of the power generator, and such that a reduction of a temperature of the at least one semiconductor switching element by more than a predetermined value is prevented.
In an impedance matching circuit selectively operable in a normal matching mode and a protection mode, the impedance matching circuit includes a set of reactances in a first reactance arrangement configured to transform an impedance of a load to an impedance within a range of a nominal impedance of an HF generator in the normal matching mode, and a PIN diode switch having a first invariable switching state in the normal matching mode and a second switchomg state that reconfigures the set of reactances into a second reactance arrangement in the protection mode, such that the second reactance arrangement is configured to transform the impedance of the load to prevent damage to the HF generator or to transmission circuitry arranged between the HF generator and the load.
A plasma supply device generates an output power greater than 500 W at an essentially constant basic frequency greater than 3 MHz and powers a plasma process to which is supplied the generated output power, and from which reflected power is returned to the plasma supply device. The plasma supply device includes at least one inverter connected to a DC power supply, which inverter has at least one switching element, and an output network, wherein the at least one output network includes at least one inductance that has at least one magnetic field strengthening element that is a Perminvar ferrite.
In one aspect, protecting high frequency (HF) amplifiers of a plasma supply device configured to deliver >500 W at a substantially constant fundamental frequency >3 MHz is accomplished by: driving two HF amplifiers with two drive signals having a common frequency and a predetermined phase shift with respect to one another; generating two HF source signals using the HF amplifiers, the HF source signals coupled in a coupler to form a HF output signal; transmitting the HF output signal to the plasma load; measuring electrical variables related to the load impedances seen by the two HF amplifiers; determining whether the load impedance seen by one of the HF amplifiers lies outside a predetermined range; and adjusting the phase shift of the two drive signals, wherein neither of the load impedances seen by the HF amplifiers lies outside the predetermined range.
Operation of a plasma supply device having at least one switching bridge with at least two switching elements, and configured to deliver a high frequency output signal having a power of >500 W and a substantially constant fundamental frequency >3 MHz to a plasma load is accomplished by determining at least one operating parameter, at least one environmental parameter of at least one switching element and/or a switching bridge parameter, determining individual drive signals for the switching elements taking into account the at least one operating parameter, the at least one environmental parameter and/or the switching bridge parameter, and individually driving the switching elements with a respective drive signal.
Determining a high frequency operating parameter in a plasma system including a plasma power supply device coupled to a plasma load using a hybrid coupler having four ports is accomplished by: generating two high frequency source signals of identical frequency, the signals phase shifted by 90° with respect to one another; generating a high frequency output signal by combining the high frequency source signals in the hybrid coupler; transmitting the high frequency output signal to the plasma load; detecting two or more signals, each signal corresponding to a respective port of the hybrid coupler and related to an amplitude of a high frequency signal present at the respective port; and based on an evaluation of the two or more signals, determining the high frequency operating parameter.
b. generating at least one signal relating to the arc detection and/or data relating to the arc detection;
transferring the at least one signal and/or the data to a plasma process-regulating device and/or to one or more other power supplies or to one or more of the arc diverter devices associated with the other power supplies.
A full bridge that produces an alternating output signal can be driven by operating switching elements of the full bridge in each period in a switching sequence that determines the order of the activation and deactivation of the switching elements. The switching elements are switched in at least two different switching sequences, a first switching sequence is repeated n times before a second switching sequence is carried out, with n>1, or the switching elements are switched in at least three different switching sequences.
Workpieces in a vacuum chamber are treated by receiving a mains voltage from a voltage supply network; generating at least one intermediate circuit voltage; generating a first RF signal of a basic frequency, and of a first phase position, from the at least one intermediate circuit voltage; generating a second RF signal of the basic frequency, and of a second phase position, from the at least one intermediate circuit voltage; and coupling the first and the second signal and generating an output signal for the vacuum chamber using a 3 dB coupler.
A plasma supply device generates an output power greater than 500 W at an essentially constant basic frequency greater than 3 MHz and powers a plasma process to which is supplied the generated output power, and from which reflected power is returned to the plasma supply device. The plasma supply device includes at least one inverter connected to a DC power supply, which inverter has at least one switching element, and an output network. The output network is arranged on a printed circuit board. The output network can therefore be designed low priced and accurately.
A high frequency power supply, in particular a plasma supply device, for generating an output power greater than 1 kW at a basic frequency of at least 3 MHz with at least one switch bridge, which has two series connected switching elements, wherein one of the switching elements is connected to a reference potential varying in operation, and is activated by a driver, and wherein the driver has a differential input with two signal inputs and is connected to the reference potential varying in operation.
H02M 3/158 - Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
A plasma supply device includes a full bridge circuit that is connected to a DC power supply and that has two half bridges each with two series connected switching elements. The plasma supply device further includes a primary winding of a power transformer connected to centers of the half bridges between the switching elements. The primary winding includes a tapping connectable to an alternating current center between the potentials of the DC power supply.
An RF power supply, in particular a plasma supply device, for generating an output power greater than 500 W at an output frequency of at least 3 MHz includes at least one inverter connectable to a DC power supply, which inverter comprises at least one switching element and an output network. An accompanying line connects an electrical component to the inverter by a lead-in of the output network.
H02M 7/537 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
An amplifier arrangement for operation at supply voltages of at least 100V and at output powers of at least 1 kW includes a half-bridge formed from two switching elements connected in series, two supply voltage terminals, and an output connection between the switching elements. A bypass capacitor is in parallel with the switching elements, and a current path is through the switching elements and the bypass capacitor, where the current path has a length of 10 cm or less, the half-bridge and the bypass capacitor are arranged on an area of 30 cm2, and a resonant circuit formed by capacitances and inductances in the current path has a resonance frequency of 100 MHz or greater.
A sealing device for inductive sealing of containers is provided. The sealing device includes at least one induction coil made from an at least partially flexible conductor. The induction coil has two coil halves arranged at a distance (d) apart between which the containers can be moved, in which the conductor in each case extends essentially parallel to a direction of motion (B) of the containers. The coil halves are connected to the induction coil via at least one flexible conductor loop, which extends perpendicular to the direction of motion (B) of the containers.
For suppressing arc discharges in a plasma process, a method includes monitoring of at least one parameter of the plasma process, determining a temporal feature of a first countermeasure and performing the first countermeasure. The temporal feature is determined as a function of, for example, at least one of an interval in time from at least one previous countermeasure, a development of the at least one parameter since a relevant time of introduction of the countermeasure, or since a variable period of time ahead of the relevant time of introduction of the countermeasure, and a differentiation as to whether a previous countermeasure was triggered based on the behavior of the at least one parameter, or based on the interval in time from at least one previous countermeasure.
A plasma power supply system for producing electrical power in the range between 1 kW and 100 kW for a plasma processing system and supplying the power to a plasma chamber through a power line connection, the plasma power supply system includes a power converter, a monitoring section, an arc diverter, a control section with an arc diverter control section and an arc detection section, and an input device wherein the input device is connected to the arc diverter.
An HF plasma process excitation configuration includes an HF generator that is connected to a plasma load through a directional coupler. The directional coupler includes a transmission line, a first coupling line for detecting reflected power from the plasma load, and a second coupling line for detecting forward power from the HF generator, is the first coupling line is spaced apart from the transmission line and is terminated at least at one end with a termination resistance. The second coupling line is spaced apart from the transmission line and is terminated at least at one end with a termination resistance. Each coupling line has a predetermined and adjusted characteristic impedance, and the termination resistances each have a resistance value that corresponds within a tolerance to the characteristic impedance of the associated coupling line with a tolerance.
H01P 5/18 - Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
A plasma process power delivery system includes one or more event-ascertaining devices within the plasma process power delivery system, a controller in communication with the one or more event ascertaining devices, a first memory, a second memory, a data transmission connection, and a plasma process monitoring system. The data transmission connection is between the first memory and the second memory and is configured to transmit data relating to the plasma process power delivery system between the first memory and the second memory in response to an occurrence of a predefined event ascertained by one or more event-ascertaining devices. The plasma process monitoring system is in communication with the second memory and analyzes circumstances associated with the event that triggers the storage in the second memory using the data stored in the second memory.
A vacuum plasma generator (VPG) includes an output connector for electrical connection of the VPG to at least one electrode of a plasma chamber. The VPG includes a mains connector for connection of the VPG to a mains power supply, a mains input filter coupled to the mains connector, a voltage converter coupled to the mains input filter for generating an output signal, a voltage converter control input for connection to a voltage converter control, a shield that surrounds at least the voltage converter, the mains power supply, and the mains input filter, and a connection device that provides an electrical connection between the shield and the plasma chamber.
The power output of an RF plasma supply device is controlled by producing at least a first and second RF power signal by means of a respective RF generator, coupling at least two RF power signals into a coupled RF power, and distributing the coupled RF power between a plasma power that is to be supplied to a plasma load and an equalizing power that is to be supplied to an equalizing load. The power output is controlled by adjusting the levels and/or the phase position of the RF power signals in such a manner that, for plasma power in the range between a predefined lower power limit and a predefined nominal power, an insignificant portion of the coupled RF power constitutes the equalizing power and, for plasma power below the predefined lower power limit, a significant portion of the coupled RF power constitutes the equalizing power.
An arc discharge detection device is used for detecting arc discharges in a plasma process. The arc discharge detection device includes a comparator to which an instantaneous signal and a reference value are supplied. The reference value is formed by a setting means from an extreme value of the signal. The extreme value is determined by an extreme value detection device within a predetermined time period, and the comparator changes the state of an arc discharge detection signal when the comparison between the reference value and an instantaneous value of the signal shows that an arc discharge has occurred.
A vacuum plasma generator is used for treating workpieces in a vacuum chamber. The vacuum plasma generator includes a mains connection for connection to a voltage supply network, and at least one mains rectifier. The at least one mains rectifier is connected to at least one first converter that generates at least one intermediate circuit voltage, a first RF signal generator, a second RF signal generator, and at least one 3 dB coupler. The first RF signal generator is connected to at least one intermediate circuit voltage, for generating a first signal of a basic frequency and of a first phase position. The second RF signal generator is connected to at least one intermediate circuit voltage, for generating a second signal of the basic frequency and of a second phase position. The least one 3 dB coupler couples the first and the second signal into an output signal of the generator.
A method is performed for influencing the signal shape of an output signal of an RF power resonance amplifier and an RF excitation arrangement including an RF power resonance amplifier. A basic signal of a basic frequency is amplified and modulated with a modulation signal, and an output oscillating circuit of the RF power resonance amplifier is tuned to a frequency in the range of the basic frequency, and is excited with the basic signal during normal operation. At times that are or can be predetermined, the output oscillating circuit is driven with a driving signal that differs from the basic signal, for a time period that is or can be predetermined. This reduces the dying down time of the output oscillating circuit and increases the steepness of the output signal edges.