A freewheel hub having a non-zero deadband distance in order to reduce or eliminate pedal kickback. The deadband distance is able to have or be adjusted to a desired length including lengths that enable silent freewheeling operation where the pawls of the freewheel body do not engage or contact the teeth of the ratchet gear thereby eliminating any contact-based freewheeling sound.
B60B 27/04 - Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets
B62M 1/36 - Rider propulsion of wheeled vehicles with rotary cranks, e.g. with pedal cranks
B62M 1/32 - Rider propulsion of wheeled vehicles with reciprocating levers, e.g. foot levers characterised by directly driving the wheel axle, e.g. by using a ratchet wheel
F16D 41/12 - Freewheels or freewheel clutches with hinged pawl co-operating with teeth, cogs, or the like
A freewheel hub having a non-zero deadband distance in order to reduce or eliminate pedal kickback. The deadband distance is able to have or be adjusted to a desired length including lengths that enable silent freewheeling operation where the pawls of the freewheel body do not engage or contact the teeth of the ratchet gear thereby eliminating any contact-based freewheeling sound.
A seal for a bicycle drivetrain is configured to shield and protect part of the bicycle drivetrain from contamination by materials commonly found in the cycling environment, namely dirt, oil, water and other debris found on cycling surfaces. The seal is configured to shield the bicycle drivetrain from grit that may foul lockring interfaces, leading to seized threads, and cause difficulty removing the lock ring when it comes time to service the motor or replace the chainring.
A telescopic, height adjustable, bicycle seatpost with a fixed frame insertion length, but adjustable uncompressed resting height is described herein. This telescopic bicycle seatpost with adjustable height and fixed frame insertion provides a unique structure and method for setting the uncompressed resting height of a telescopic bicycle seatpost, while using a fixed insertion length into the bicycle frame. The assembly allows a single telescopic bicycle seatpost to fit on many different sizes of bicycle, for cyclists of varied height and leg length, while maximizing the telescoping length of the seatpost for each situation, without requiring various lengths of seatpost to be manufactured. Instead, the telescoping length of the seatpost may be adjusted for cyclists of different height, allowing for one seatpost to fit many size frames and cyclists, while allowing each individual to maximize the telescoping length for their particular setup.
A telescopic, height adjustable, bicycle seatpost with a fixed frame insertion length, but adjustable uncompressed resting height is described herein. This telescopic bicycle seatpost with adjustable height and fixed frame insertion provides a unique structure and method for setting the uncompressed resting height of a telescopic bicycle seatpost, while using a fixed insertion length into the bicycle frame. The assembly allows a single telescopic bicycle seatpost to fit on many different sizes of bicycle, for cyclists of varied height and leg length, while maximizing the telescoping length of the seatpost for each situation, without requiring various lengths of seatpost to be manufactured. Instead, the telescoping length of the seatpost may be adjusted for cyclists of different height, allowing for one seatpost to fit many size frames and cyclists, while allowing each individual to maximize the telescoping length for their particular setup.
A conical shaped bicycle cassette has a unitary sprocket assembly. Each annular portion of an individual sprocket is mechanically supported either from a back of the sprocket, in an axial direction toward a bicycle hub or from an inner radial direction toward a centerline axis of the bicycle cassette and hub. The axial support zones and radial support zones are alternated around a circumference of the sprocket so that an entirety of the sprocket is supported in either the axial direction or the radial direction. In this way, the chain driving loads on the cassette are spread throughout the entire cassette and the areas of highly localized stress from the cassette are removed.
B62M 9/10 - Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels selectively engaged by the chain, belt, or the like
B60B 27/02 - Hubs adapted to be rotatably arranged on axle
B60B 27/04 - Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets
B62M 9/12 - Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels selectively engaged by the chain, belt, or the like the chain, belt, or the like being laterally shiftable
A conical shaped bicycle cassette has a unitary sprocket assembly. Each annular portion of an individual sprocket is mechanically supported either from a back of the sprocket, in an axial direction toward a bicycle hub or from an inner radial direction toward a centerline axis of the bicycle cassette and hub. The axial support zones and radial support zones are alternated around a circumference of the sprocket so that an entirety of the sprocket is supported in either the axial direction or the radial direction. In this way, the chain driving loads on the cassette are spread throughout the entire cassette and the areas of highly localized stress from the cassette are removed.
B62M 9/10 - Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels selectively engaged by the chain, belt, or the like
B60B 27/02 - Hubs adapted to be rotatably arranged on axle
B60B 27/04 - Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets
8.
Telescopic bicycle seatpost with adjustable uncompressed resting height
A telescopic bicycle seatpost is adjustable to fit on many different bicycle sizes, for riders of different heights and leg length. The telescopic length of the seatpost is able to be adjusted after the seatpost has been installed on the bicycle and without removing the seatpost from the frame, which enables the frame and seatpost combination to be quickly adjusted for different users of the same bicycle, in instances where the bicycle is shared between two or more riders or is used as part of a rental fleet.
A bicycle cassette comprises two segments that are attached together thereby forming a composite cassette that can be attached to a rear bicycle hub driver body. The bicycle cassette allows for the use of a smaller sprocket on one segment of the cassette because the smaller sprockets can overhang the hub driver body. Specifically, the cassette allows a small 9 or 10 tooth sprocket to overhang the cassette driver body on the bicycle hub by attaching a small sprocket assembly to a larger sprocket assembly using a locking, bayonet style attachment.
B62M 9/10 - Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels selectively engaged by the chain, belt, or the like
A bearing preload adjuster for a bicycle crank set and bottom bracket comprises an adjustment ring for coupling with a bicycle crank arm, a movable plunger comprising an external thread for rotatably coupling with the adjustment ring. The adjustment ring is rotated in order to cause the plunger to extend along an axis of the bottom bracket and apply pressure to a bottom bracket bearing inner race. The adjustment ring is rotated until the clearance in the bearing assemblies and the play in the bottom bracket assembly has been eliminated. This allows the crank assembly to rotate freely, while preventing the crank assembly from sliding side to side inside the bearing bores and along the axis of the crank spindle.
A bicycle cassette comprises a clampstyle connection for connecting the bicycle cassette to a bicycle hub driver body. The bicycle cassette is attached to a bicycle hub driver body by incorporating a clamp structure into one portion of the cassette, which then rigidly clamps onto the driver body of the bicycle hub. In addition, when combined with a bayonet style attachment structure between two parts of the cassette, it allows for the use of a smaller sprocket on one segment of the cassette. Specifically, it allows a small 9 or 10 tooth sprocket to overhang the cassette driver body on a bicycle hub, by attaching the small cog assembly to a larger cog assembly using a bayonet style attachment.
B62M 9/10 - Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels selectively engaged by the chain, belt, or the like
A bicycle cassette comprises a clampstyle connection for connecting the bicycle cassette to a bicycle hub driver body. The bicycle cassette is attached to a bicycle hub driver body by incorporating a clamp structure into one portion of the cassette, which then rigidly clamps onto the driver body of the bicycle hub. In addition, when combined with a bayonet style attachment structure between two parts of the cassette, it allows for the use of a smaller sprocket on one segment of the cassette. Specifically, it allows a small 9 or 10 tooth sprocket to overhang the cassette driver body on a bicycle hub, by attaching the small cog assembly to a larger cog assembly using a bayonet style attachment.
B60B 27/04 - Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets
B62M 9/10 - Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels selectively engaged by the chain, belt, or the like
A composite bicycle crank with an integral spindle attachment structure provides a unique method for attaching a bicycle crank arm to a bicycle crank spindle, and also for attaching a bicycle crank arm to a crank arm insert. A light-weight crank arm is able to be manufactured separately from the crank spindle or insert, and then securely attached after both pieces have been made. This allows for the pieces of the crank assembly to be manufactured from one or more different materials, and securely connected after manufacturing, to create a lower weight assembly than would be possible otherwise.
B62M 3/00 - Construction of cranks operated by hand or foot
F16D 1/06 - Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
F16D 1/108 - Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
F16D 1/08 - Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hubCouplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with hub and longitudinal key
F16D 1/10 - Quick-acting couplings in which the parts are connected by simply bringing them together axially
A composite bicycle crank with an integral spindle attachment structure provides a unique method for attaching a bicycle crank arm to a bicycle crank spindle, and also for attaching a bicycle crank arm to a crank arm insert. A light-weight crank arm is able to be manufactured separately from the crank spindle or insert, and then securely attached after both pieces have been made. This allows for the pieces of the crank assembly to be manufactured from one or more different materials, and securely connected after manufacturing, to create a lower weight assembly than would be possible otherwise.
A bicycle cassette comprises two segments that are attached together thereby forming a composite cassette that can be attached to a rear bicycle hub driver body. The bicycle cassette allows for the use of a smaller sprocket on one segment of the cassette because the smaller sprockets can overhang the hub driver body. Specifically, the cassette allows a small 9 or 10 tooth sprocket to overhang the cassette driver body on the bicycle hub by attaching a small sprocket assembly to a larger sprocket assembly using a locking, bayonet style attachment.
F16D 1/112 - Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling the interengaging parts comprising torque-transmitting surfaces, e.g. bayonet joints
B62M 9/10 - Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels selectively engaged by the chain, belt, or the like
F16D 1/108 - Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
F16D 41/24 - Freewheels or freewheel clutches specially adapted for cycles
F16H 9/06 - Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a stepped pulley
A bicycle cassette comprises two segments that are attached together thereby forming a composite cassette that can be attached to a rear bicycle hub driver body. The bicycle cassette allows for the use of a smaller sprocket on one segment of the cassette because the smaller sprockets can overhang the hub driver body. Specifically, the cassette allows a small 9 or 10 tooth sprocket to overhang the cassette driver body on the bicycle hub by attaching a small sprocket assembly to a larger sprocket assembly using a locking, bayonet style attachment.
B62M 9/10 - Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels selectively engaged by the chain, belt, or the like
12 - Land, air and water vehicles; parts of land vehicles
Goods & Services
Bicycles; bicycle brakes; bicycle gears; bicycle pedals; bicycle wheels; bicycle wheel rims; bicycle chains; bicycle sprockets; bicycle tires; bicycle cranks; bicycle handlebars; brake shoes for bicycles; speed change gears for bicycles; drive trains for bicycles; gear wheels for bicycles; spindles for bicycles; pumps for bicycle tires; bicycle components for bicycles, namely, headsets which provide a rotatable interface between the bicycle fork and the bicycle frame; vehicle wheel hubs.
12 - Land, air and water vehicles; parts of land vehicles
Goods & Services
Bicycles; bicycle brakes; bicycle gears; bicycle pedals; bicycle wheels; bicycle wheel rims; bicycle chains; bicycle sprockets; bicycle tires; bicycle cranks; bicycle handlebars; brake shoes for bicycles; speed change gears for bicycles; drive trains for bicycles; gear wheels for bicycles; spindles for bicycles; pumps for bicycle tires; bicycle components for bicycles, namely, headsets which provide a rotatable interface between the bicycle fork and the bicycle frame; vehicle wheel hubs.
A bearing preload adjuster for a bicycle crank set and bottom bracket comprises an adjustment ring for coupling with a bicycle crank arm, a movable plunger comprising an external thread for rotatably coupling with the adjustment ring. The adjustment ring is rotated in order to cause the plunger to extend along an axis of the bottom bracket and apply pressure to a bottom bracket bearing inner race. The adjustment ring is rotated until the clearance in the bearing assemblies and the play in the bottom bracket assembly has been eliminated. This allows the crank assembly to rotate freely, while preventing the crank assembly from sliding side to side inside the bearing bores and along the axis of the crank spindle.
A bicycle brake system includes a first arm unit having a first arm and an engaging slot. A second arm unit is located in the engaging slot and has a second arm. The first and second arms each have a brake pad and the two brake pads face the two sides of the wheel rim. A cam unit has a contact piece connected to the second arm unit and a cam member pivotably connected to the first arm unit. The cam member includes a cam portion having a curved surface which is in contact with the contact piece. An operation unit is connected to the second arm unit and includes a cable which is fixed to the guide portion of the cam member. The cam member indirectly contacts the second arm unit so that the second arm unit does not wear out.