One variation of a method for monitoring lift events at a construction site includes: deriving a lifting profile from a first timeseries of load values, output by a load sensor coupled to a crane hook, during a first time period; deriving an oscillation characteristic from a first timeseries of motion values, output by a motion sensor coupled to the crane hook, during the first time period; identifying a type of an object carried by the crane hook during the first time period based on the lifting profile and the oscillation characteristic; selecting a load handling specification for the object based on the type of the object; accessing a second timeseries of motion values output by the motion sensor during a second time period; and, in response to the second timeseries of motion values deviating from the load handling specification, activating an object motion alarm for the object.
G01G 3/14 - Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
B66C 13/16 - Applications of indicating, registering, or weighing devices
B66C 13/46 - Position indicators for suspended loads or for crane elements
B66C 23/90 - Devices for indicating or limiting lifting movement
B66F 11/04 - Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
B66F 17/00 - Safety devices, e.g. for limiting or indicating lifting force
2.
System for tracking lifting events at a construction site
One variation for a system for tracking lifting events at a construction site includes: a chassis configured to couple to a crane block of a crane at a construction site. The system further includes a first idler assembly including a first cable idler, a first idler arm, and a first position sensor coupled to the first idler arm. The first idler arm supports the first cable idler on a first side of the chassis and biases the first cable idler inwardly toward a first cable loop coupled to the crane block. Additionally, the system includes a controller configured to, during a lift event: read a first position value from the first position sensor; predict a weight of the load carried by the crane block based on the first position value; and generate a lift event record containing the weight of the load carried by the crane block.
B66C 13/16 - Applications of indicating, registering, or weighing devices
G01G 19/18 - Weighing apparatus or methods adapted for special purposes not provided for in groups for weighing suspended loads having electrical weight-sensitive devices
3.
METHOD FOR MONITORING LIFTING EVENTS AT A CONSTRUCTION SITE
One variation of a method for tracking lift events at a construction site includes: accessing a timeseries of load values output by a weight sensor, coupled to a crane hook, and a first geospatial location of the crane hook during a first time period; deriving a lifting profile at the first geospatial location from the timeseries of load values; deriving a weight of the object from the timeseries of load values; identifying a type of the object carried by the crane hook during the first time period based on the lifting profile; accessing a second geospatial location of the crane hook during unloading of the object from the crane hook; and generating a lift event record defining the type of the object, the weight of the object, a pickup location of the object at the first geospatial location, and a drop-off location of the object at the second geospatial location.
One variation of a method for monitoring lift events at a construction site includes: deriving a lifting profile from a first timeseries of load values, output by a load sensor coupled to a crane hook, during a first time period; deriving an oscillation characteristic from a first timeseries of motion values, output by a motion sensor coupled to the crane hook, during the first time period; identifying a type of an object carried by the crane hook during the first time period based on the lifting profile and the oscillation characteristic; selecting a load handling specification for the object based on the type of the object; accessing a second timeseries of motion values output by the motion sensor during a second time period; and, in response to the second timeseries of motion values deviating from the load handling specification, activating an object motion alarm for the object.
G01G 3/14 - Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
B66F 11/04 - Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
B66F 17/00 - Safety devices, e.g. for limiting or indicating lifting force
B66C 13/16 - Applications of indicating, registering, or weighing devices
B66C 13/46 - Position indicators for suspended loads or for crane elements
B66C 23/90 - Devices for indicating or limiting lifting movement
5.
Method for monitoring lifting events at a construction site
One variation of a method for tracking lift events at a construction site includes: accessing a timeseries of load values output by a weight sensor, coupled to a crane hook, and a first geospatial location of the crane hook during a first time period; deriving a lifting profile at the first geospatial location from the timeseries of load values; deriving a weight of the object from the timeseries of load values; identifying a type of the object carried by the crane hook during the first time period based on the lifting profile; accessing a second geospatial location of the crane hook during unloading of the object from the crane hook; and generating a lift event record defining the type of the object, the weight of the object, a pickup location of the object at the first geospatial location, and a drop-off location of the object at the second geospatial location.
One variation of a method for tracking lift events at a construction site includes: accessing a timeseries of load values output by a weight sensor, coupled to a crane hook, and a first geospatial location of the crane hook during a first time period; deriving a lifting profile at the first geospatial location from the timeseries of load values; deriving a weight of the object from the timeseries of load values; identifying a type of the object carried by the crane hook during the first time period based on the lifting profile; accessing a second geospatial location of the crane hook during unloading of the object from the crane hook; and generating a lift event record defining the type of the object, the weight of the object, a pickup location of the object at the first geospatial location, and a drop-off location of the object at the second geospatial location.
One variation of a method for tracking lift events at a construction site includes: accessing a timeseries of load values output by a weight sensor, coupled to a crane hook, and a first geospatial location of the crane hook during a first time period; deriving a lifting profile at the first geospatial location from the timeseries of load values; deriving a weight of the object from the timeseries of load values; identifying a type of the object carried by the crane hook during the first time period based on the lifting profile; accessing a second geospatial location of the crane hook during unloading of the object from the crane hook; and generating a lift event record defining the type of the object, the weight of the object, a pickup location of the object at the first geospatial location, and a drop-off location of the object at the second geospatial location.
One variation of a method for tracking lift events at a construction site includes: accessing a timeseries of load values output by a weight sensor, coupled to a crane hook, and a first geospatial location of the crane hook during a first time period; deriving a lifting profile at the first geospatial location from the timeseries of load values; deriving a weight of the object from the timeseries of load values; identifying a type of the object carried by the crane hook during the first time period based on the lifting profile; accessing a second geospatial location of the crane hook during unloading of the object from the crane hook; and generating a lift event record defining the type of the object, the weight of the object, a pickup location of the object at the first geospatial location, and a drop-off location of the object at the second geospatial location.
One variation of a method for tracking lift events at a construction site includes: accessing a timeseries of load values output by a weight sensor, coupled to a crane hook, and a first geospatial location of the crane hook during a first time period; deriving a lifting profile at the first geospatial location from the timeseries of load values; deriving a weight of the object from the timeseries of load values; identifying a type of the object carried by the crane hook during the first time period based on the lifting profile; accessing a second geospatial location of the crane hook during unloading of the object from the crane hook; and generating a lift event record defining the type of the object, the weight of the object, a pickup location of the object at the first geospatial location, and a drop-off location of the object at the second geospatial location.
B66C 13/46 - Position indicators for suspended loads or for crane elements
B66C 13/16 - Applications of indicating, registering, or weighing devices
B66C 13/04 - Auxiliary devices for controlling movements of suspended loads, or for preventing cable slack
B66C 13/08 - Auxiliary devices for controlling movements of suspended loads, or for preventing cable slack for depositing loads in desired attitudes or positions
B66D 1/50 - Control devices automatic for maintaining predetermined rope, cable, or chain tension, e.g. in ropes or cables for towing craft, in chains for anchorsWarping or mooring winch-cable tension control
10.
Method for tracking lifting events at a construction site
One variation of a method for monitoring lift events at a construction site includes: deriving a lifting profile from a first timeseries of load values, output by a load sensor coupled to a crane hook, during a first time period; deriving an oscillation characteristic from a first timeseries of motion values, output by a motion sensor coupled to the crane hook, during the first time period; identifying a type of an object carried by the crane hook during the first time period based on the lifting profile and the oscillation characteristic; selecting a load handling specification for the object based on the type of the object; accessing a second timeseries of motion values output by the motion sensor during a second time period; and, in response to the second timeseries of motion values deviating from the load handling specification, activating an object motion alarm for the object.
G01G 3/14 - Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
B66F 11/04 - Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
B66F 17/00 - Safety devices, e.g. for limiting or indicating lifting force
B66C 13/16 - Applications of indicating, registering, or weighing devices
B66C 13/46 - Position indicators for suspended loads or for crane elements
B66C 23/90 - Devices for indicating or limiting lifting movement