An aircraft landing gear assembly having a reinstating geometry in which a lock link can be moved to assume a first locking condition to inhibit movement of a stay when a main strut is in a deployed condition and a second locking condition to inhibit movement of the main strut when in a stowed condition. An unlock actuator is coupled between a first element of the stay and the lock link such that the actuator can break the lock link from the first locking condition and force it to assume the second locking condition by operational force in a single direction.
An aircraft assembly having: a first part; a second part, the second part being movably mounted with respect to the first part; an electro-hydraulic actuator coupled between the second part and a first anchor point, the actuator comprising a cylinder defining a bore and a piston and rod assembly slidably mounted within the bore and an active chamber within which an increase in fluid pressure causes the actuator to change during a first phase between first and second extension states to move the second part relative to the first part. The electro-hydraulic actuator further includes a hydraulic fluid supply circuit comprising a piezo-electric pump operable to supply pressurised fluid to the active chamber to change the actuator between first and second extension states.
F15B 15/06 - Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non-rectilinear movement
B64C 25/12 - Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like sideways
F15B 1/02 - Installations or systems with accumulators
F15B 11/10 - Servomotor systems without provision for follow-up action with only one servomotor in which the servomotor position is a function of the pressure
A center biased actuator having an outer cylinder, a slave cylinder linearly transposed within the outer cylinder, a rod assembly with a piston linearly transposed within the slave cylinder and a rod extending from the outer cylinder, one or more first dynamic seals arranged to act on a sidewall of the rod to inhibit hydraulic fluid leaking from the outer cylinder, one or more second dynamic seals arranged to act on a sidewall of the slave cylinder or an inner surface of the outer cylinder to inhibit hydraulic fluid leaking from the outer cylinder, and a gas chamber comprising a sealed expandable chamber containing gas. The expandable chamber is arranged to act on hydraulic fluid within the center biased actuator to bias the center biased actuator to assume an intermediate condition which lies between a compressed condition and an extended condition.
F15B 11/12 - Servomotor systems without provision for follow-up action with only one servomotor providing distinct intermediate positionsServomotor systems without provision for follow-up action with only one servomotor with step-by-step action
F16F 9/088 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid in a chamber with a flexible wall comprising a gas spring with a flexible wall provided within the cylinder on the piston rod of a monotubular damper or within the inner tube of a bitubular damper
F15B 1/10 - Accumulators using a gas cushionGas charging devicesIndicators or floats therefor with flexible separating means
B64C 25/34 - Alighting gear characterised by elements which contact the ground or similar surface wheeled type, e.g. multi-wheeled bogies
F16F 9/52 - Special means providing automatic damping adjustment in case of change of temperature
F16F 9/06 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
An aircraft landing gear bogie beam including first and second ends and a mounting bearing for connection to an aircraft landing gear main strut between the ends. Each end has a respective axle, and each axle defines a wheel mounting portion on each side of the bogie beam. The bogie beam is arranged to enable the first and second axles to each pivot relative to the bearing about a respective longitudinal axis of the bogie beam by an amount that is sufficient to place a wheel rim of a wheel assembly in contact with the ground in the event of a tyre of the wheel assembly deflating.
A bearing having an electrically conductive sleeve and a self-lubricating liner wherein the electrically conductive sleeve comprises a first portion and a second portion, the first portion and the second portion having respectively an inner surface and an outer surface; the self-lubricating liner extends over the inner surface of the first portion of the electrically conductive sleeve to define a first tubular volume, the first tubular volume having a first diameter and a first longitudinal axis; and the inner surface of the second portion of the electrically conductive sleeve defines a second tubular volume, the second tubular volume having the same diameter and the same longitudinal axis as the first tubular volume.
A bush assembly configured to be disposed between a first component and a second component movably coupled to the first component, the bush assembly comprising a first bush portion comprising a self-lubricating material; and a second bush portion, the second bush portion having greater electrical conductivity than the first bush portion, wherein the second bush portion provides a conductive path between the first component and the second component.
A bearing arrangement having: a first element having an inner race and a first bearing surface; a second element, pivotable relative to the first element about a first axis, and having an outer race and a second bearing surface that cooperates with the first bearing surface to form a plain bearing. The bearing arrangement also includes a roller element disposed between the inner and outer races to form a rolling bearing. The inner and outer races are arcuate and subtend an angle of less than 360° about the first axis.
An aircraft assembly includes a first body connected to a second body via a flexible coupling that limits separation of the bearing faces while permitting relative rotational movement between the bodies. The flexible coupling includes one or more first flexible straps attached to the first side of the first body and attached to the second side of the second body, and one or more second flexible straps attached to the second side of the first body and attached to the first side of the second body. The bearing faces include planar central portions to react compressive loads while the parts are aligned, and convex outer rolling surfaces to react loads during rotational movement between the bodies, such that a point of contact between the first body and the second body moves along curves of the respective curved end regions during the rotational movement between the bodies.
An aircraft landing gear shock absorber assembly having: an outer cylinder having a bore which extends into the outer cylinder, the bore defining an opening in the outer cylinder; a sliding tube having a first end region slidably coupled within the bore and a second end region which projects out of opening; a ground fitting distinct from the sliding tube; and a mechanical fixing arranged to mechanically couple the ground fitting to the second end region of the sliding tube, wherein the sliding tube comprises a tubular body portion formed from a ceramic coated fibre composite tube.
F16F 9/06 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
F16F 9/58 - Stroke limiting stops, e.g. arranged on the piston rod outside the cylinder
An aircraft landing gear assembly having a bogie beam pivotally coupled to a support member, and a pitch trimmer assembly including a pitch trimmer actuator configured to exert a biasing force in a first direction and a bias force transmission assembly configured to receive the biasing force in the first direction and bias the bogie beam towards a predetermined neutral position relative to the support member irrespective of the initial position of the bogie beam.
An aircraft landing gear assembly having a reinstating geometry in which a lock link can be moved to assume a first locking condition to inhibit movement of a stay when a main strut is in a deployed condition and a second locking condition to inhibit movement of the main strut when in a stowed condition. An unlock actuator is coupled between a first element of the stay and the lock link such that the actuator can break the lock link from the first locking condition and force it to assume the second locking condition by operational force in a single direction.
An aircraft landing gear component having first and second base members, separated along a first longitudinal axis, a plurality of first parallel hoops, each first hoop lying along the first longitudinal axis and aligned in a plane oriented at a first non-zero angle to the first longitudinal axis, and a plurality of second parallel hoops, each second hoop lying along the first longitudinal axis and aligned in a plane oriented at a second non-zero angle to the first longitudinal axis, the second non-zero angle being different from the first non-zero angle, wherein each of the first hoops intersects with and is fixed to at least one of the second hoops, and wherein each of the second hoops intersects with and is fixed to at least one of the first hoops, such that the first and second hoops form a rigid structure extending between the first and second base members.
A mechanical lock for a vehicle assembly such as an aircraft landing gear assembly. The lock is either pivotally mounted and substantially mass balanced, or part of an aircraft landing gear assembly and arranged to be mechanically operated from the ground by a mechanical actuation device.
F16H 25/18 - Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
E05D 11/10 - Devices for preventing movement between relatively-movable hinge parts
An aircraft landing gear assembly comprising: an axle having an axis, a wheel rotatably mounted on the axle to rotate about the axis, a brake arranged to selectively exert a braking torque on the wheel about the axis, a brake anchor structure having a substantially fixed position relative to the axle, a brake reaction linkage that mechanically couples the brake to the brake anchor structure, and a sensor comprising a sensor element arranged to detect a change in one or more physical properties of a component of the brake reaction linkage in order to determine a stress in the component due to the braking torque, wherein the sensor element does not contact the component.
G01L 5/28 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for testing brakes
An aircraft landing gear assembly having a bogie beam, first and second wheel assemblies mounted on the bogie beam on longitudinally opposite sides of the bogie beam with respect to a bogie mounting bearing, a jacking dome mounted on the bogie beam to face a ground plane, and a guard that is distinct from the jacking dome and removably coupled to the bogie beam on an opposite side of the jacking dome with respect to the bogie mounting bearing. The jacking dome projects towards the ground plane by a first distance, and the guard extends from the bogie beam towards the ground plane by a second distance which is at least 0.9 times the first distance.
An aircraft assembly having a titanium rod comprising a first threaded portion, and a titanium nut comprising a second threaded portion conforming with the first threaded portion for mating engagement with it. One of the first and second threaded portions defines a male thread and the other one of the first and second threaded portions defines a female thread such that the nut can be wound in threading engagement along the rod. A threaded insert formed from a first metal of different hardness in comparison to titanium is coupled to the rod or the nut to define the first threaded portion or the second threaded portion respectively such that one of the first and second threaded portions is formed from titanium and the other one of the first and second threaded portions is formed from the first metal.
An aircraft landing gear assembly including a plurality of noise-inducing elements, at least one of the noise-inducing elements comprising a brake assembly or electric drive assembly, and a noise reduction fairing arranged to shield only at least a portion of the brake assembly from incident airflow.
An aircraft assembly having: a first part; a second part, the second part being movably mounted with respect to the first part; an electro-hydraulic actuator coupled between the second part and a first anchor point, the actuator comprising a cylinder defining a bore and a piston and rod assembly slidably mounted within the bore and an active chamber within which an increase in fluid pressure causes the actuator to change during a first phase between first and second extension states to move the second part relative to the first part. The electro-hydraulic actuator further includes a hydraulic fluid supply circuit comprising a piezo-electric pump operable to supply pressurised fluid to the active chamber to change the actuator between first and second extension states.
F15B 11/10 - Servomotor systems without provision for follow-up action with only one servomotor in which the servomotor position is a function of the pressure
F15B 15/06 - Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non-rectilinear movement
A method of servicing a shock absorber of an aircraft landing gear shock absorbing strut, the shock absorber including a sealed, variable volume chamber containing a liquid and a gas in fluid communication with one another, the method comprising: using a mixer to mix the liquid and the gas within the chamber until the liquid is uniformly saturated with the gas; and subsequently performing one or more servicing actions.
F16F 9/32 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details
F16F 9/06 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
F16F 9/43 - Filling arrangements, e.g. for supply of gas
An aircraft assembly, having: a reference component; a first component and a first actuator, the first actuator configured to move the first component relative to the reference component; a second component and a second actuator, the second actuator configured to move the second component relative to the reference component; a position sensor configured to measure a position of the first component, and to output a position value, the sensor being capable of outputting a plurality of non-zero position values; and a controller configured to control the movement of the second component by the second actuator based at least partially on the position value output by the position sensor.
A center biased actuator having an outer cylinder, a slave cylinder linearly transposed within the outer cylinder, a rod assembly with a piston linearly transposed within the slave cylinder and a rod extending from the outer cylinder, one or more first dynamic seals arranged to act on a sidewall of the rod to inhibit hydraulic fluid leaking from the outer cylinder, one or more second dynamic seals arranged to act on a sidewall of the slave cylinder or an inner surface of the outer cylinder to inhibit hydraulic fluid leaking from the outer cylinder, and a gas chamber comprising a sealed expandable chamber containing gas. The expandable chamber is arranged to act on hydraulic fluid within the center biased actuator to bias the center biased actuator to assume an intermediate condition which lies between a compressed condition and an extended condition.
F15B 11/12 - Servomotor systems without provision for follow-up action with only one servomotor providing distinct intermediate positionsServomotor systems without provision for follow-up action with only one servomotor with step-by-step action
F16F 9/088 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid in a chamber with a flexible wall comprising a gas spring with a flexible wall provided within the cylinder on the piston rod of a monotubular damper or within the inner tube of a bitubular damper
F15B 1/10 - Accumulators using a gas cushionGas charging devicesIndicators or floats therefor with flexible separating means
B64C 25/34 - Alighting gear characterised by elements which contact the ground or similar surface wheeled type, e.g. multi-wheeled bogies
F16F 9/52 - Special means providing automatic damping adjustment in case of change of temperature
F16F 9/06 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
An aircraft assembly having: a first part; a second part, the first part being movably mounted relative to a second part; a dynamic conduit arranged such that movement of the first part relative to the second part causes the dynamic conduit to move through a movement volume from a first conduit position to a second conduit position; a first fastener arranged to couple a component to the aircraft assembly, at least some of the first fastener residing within the movement volume of the dynamic conduit; and a safety guide arranged to be coupled to the first fastener, the safety guide comprising a bridge portion which extends away from the first fastener within the movement volume of the dynamic conduit so as to support the dynamic conduit when the dynamic conduit is in the second conduit position.
B64C 25/12 - Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like sideways
F16L 3/015 - Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets for supporting or guiding the pipes, cables or protective tubing, between relatively movable points, e.g. movable channels using articulated- or supple-guiding elements
An aircraft landing gear assembly having a main strut pivotally coupled to an aircraft, a bogie beam pivotally connected to the main strut, a first axle mounted at the first end of the bogie beam and arranged to carry one or more first wheel assemblies and brake assemblies, each first brake assembly being attached to the bogie beam by a brake rod, and a second axle mounted at a second end of the bogie beam and arranged to carry one or more second wheel assemblies and brake assemblies. A double acting actuator is coupled between the strut and the bogie beam to apply a compressive or tensile force to the bogie beam. The ends of the bogie beam are arranged to position the bogie pivot axis below a plane intersecting the axes of rotation of the first and second wheel assemblies when the strut is in the deployed condition.
An aircraft landing gear assembly including a structural load bearing beam arranged, in use, to react torsional loads applied to it. The beam has a tubular box section main body having four straight sidewall portions, adjacent sidewall portions being orthogonal to one another and connected by rounded corner portions. Each corner portion has a radius of between 10% and 40% of the width and/or height of the tubular box section main body.
A method for pressurizing and depressurizing a shock absorber of an aircraft. More specifically, it relates to a method in which an aircraft weight and ambient temperature are used to calculate a required pressurization level of a shock absorber. As such, the shock absorber may be pressurized to the correct level without applying an iterative approach, greatly reducing initialization time.
F16F 9/02 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only
G01D 5/22 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
G05B 19/04 - Programme control other than numerical control, i.e. in sequence controllers or logic controllers
A dynamic bearing for an aircraft landing gear. The bearing comprises a lug, a shaft comprising a first material, and a bearing surface comprising a second material that is softer than the first material. The bearing surface defines a bore and is arranged to support the shaft when the shaft is movably housed within the bore in use. The bearing surface is defined by the lug or a coating applied to the lug.
A health and monitoring system or “HUMS” mounted within a hollow structural subassembly of an aircraft landing gear assembly, the subassembly having an access port for access to the HUMS without requiring disassembly of the structural subassembly so as to require jacking up the aircraft.
An aircraft assembly having a bush mounted within a lug and a recess which extends along a portion of the lug-bush interface to create a relatively wide cavity for receiving sealant.