Nonnaturally occurring organisms exhibiting improved carbon utilization and methods for production and use of these nonnaturally occurring organisms in chemical production from carbon containing feedstocks are provided.
This document describes biochemical pathways for producing adipic acid, caprolactam, 6-aminohexanoic acid, 6-hydroxyhexanoic acid, hexamethylenediamine or 1,6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C6 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on CoA-dependent elongation enzymes or analogues enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
C12N 9/16 - Hydrolases (3.) acting on ester bonds (3.1)
C12N 9/80 - Hydrolases (3.) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides
C12N 9/86 - Hydrolases (3.) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase
This document describes biochemical pathways for producing 4-hydroxybutyrate, 4-aminobutyrate, putrescine or 1,4-butanediol by forming one or two terminal functional groups, comprised of amine or hydroxyl group, in a C5 backbone substrate such as 2-oxoglutarate or L-glutamate.
C08G 69/26 - Polyamides derived from amino carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
C07C 227/32 - Preparation of optical isomers by stereospecific synthesis
C08G 69/08 - Polyamides derived from amino carboxylic acids or from polyamines and polycarboxylic acids derived from amino carboxylic acids
C07C 227/18 - Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
C07C 221/00 - Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
C07C 213/02 - Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
C07C 209/68 - Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
C12N 9/04 - Oxidoreductases (1.), e.g. luciferase acting on CHOH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)
7, of greater than 3.2. Such nylon staple fibers are produced by preparing tows of relatively uniformly spun and quenched nylon filaments, drawing and annealing such tows via a two-stage drawing and annealing operation using relatively high draw ratios and then cutting or otherwise converting the drawn and annealed tows into the desired high strength nylon staple fibers.
The nylon staple fibers so prepared can be blended with other fibers such as cotton staple fibers to produce nylon/cotton (NYCO) yarns which are also of desirably high strength.
D03D 15/00 - Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
D02G 3/00 - Yarns or threads, e.g. fancy yarnsProcesses or apparatus for the production thereof, not otherwise provided for
D01F 6/60 - Monocomponent man-made filaments or the like of synthetic polymersManufacture thereof from homopolycondensation products from polyamides
D02G 3/04 - Blended or other yarns or threads containing components made from different materials
D02G 3/44 - Yarns or threads characterised by the purpose for which they are designed
D03D 1/00 - Woven fabrics designed to make specified articles
D03D 15/12 - Woven fabrics characterised by the material or construction of the yarn or other warp or weft elements used using heat-resistant or fireproof threads
Disclosed is a method for inhibiting the formation of by-products from dinitriles, such as the formation of cyclopentylideneimine (CPI) from Adiponitrile (ADN), comprising adding an effective amount of a Brønsted acid to the ADN. Also disclosed is a method of refining a dinitrile compound by distillation the method comprising the steps of: (a) supplying (i) a feedstream comprising the dinitrile compound and (ii) a Brønsted acid to a distillation apparatus; and (b) withdrawing from the distillation apparatus an overhead distillate stream comprising the dinitrile compound.
B01D 3/34 - Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
Disclosed is a process for co-manufacture of ACRN and HCN with improved HCN selectivity and reduced solids formation in a shared product recovery section.
This document describes biochemical pathways for producing isoprene by forming two vinyl groups in a central precursor produced from isobutyryl-CoA, 3-methyl-2-oxopentanoate, or 4-methyl-2-oxopentanoate as well as recombinant hosts for producing isoprene.
The present disclosure relates to methods for separating at least one amine chosen from diamines and omega-aminoacids from a feed mixture using a simulated moving bed (SMB) adsorptive technology.
C07C 229/08 - Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
The present disclosure provides novel polypeptides with 3-buten-2-ol dehydratase activity, polypeptides with catalytic activity in the conversion of 3-methyl-3-buten-2-ol to isoprene, and crystal structure data for one of such polypeptides. Methods of making and using the polypeptides and their related crystal structure data are also provided.
C08F 36/22 - Homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having three or more carbon-to-carbon double bonds
G01N 33/573 - ImmunoassayBiospecific binding assayMaterials therefor for enzymes or isoenzymes
This document describes biochemical pathways for producing a difunctional product having an odd number of carbon atoms in vitro or in a recombinant host, or salts or derivatives thereof, by forming two terminal functional groups selected from carboxyl, amine, formyl, and hydroxyl groups in an aliphatic carbon chain backbone having an odd number of carbon atoms synthesized from (i) acetyl-CoA and propanedioyl-CoA via one or more cycles of methyl ester shielded carbon chain elongation or (ii) propanedioyl-[acp] via one or more cycles of methyl ester shielded carbon chain elongation. The biochemical pathways and metabolic engineering and cultivation strategies described herein rely on enzymes or homologs accepting methyl ester shielded aliphatic carbon chain backbones and maintaining the methyl ester shield for at least one further enzymatic step following one or more cycles of methyl ester shielded carbon chain elongation.
C12P 7/64 - FatsFatty oilsEster-type waxesHigher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl groupOxidised oils or fats
C12N 15/52 - Genes encoding for enzymes or proenzymes
C12P 13/00 - Preparation of nitrogen-containing organic compounds
C12P 7/24 - Preparation of oxygen-containing organic compounds containing a carbonyl group
C12P 7/40 - Preparation of oxygen-containing organic compounds containing a carboxyl group
C07C 47/12 - Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing more than one —CHO group
C07C 47/19 - Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing hydroxy groups
C07C 59/147 - Saturated compounds having only one carboxyl group and containing —CHO groups
C07C 223/02 - Compounds containing amino and —CHO groups bound to the same carbon skeleton having amino groups bound to acyclic carbon atoms of the carbon skeleton
C07C 225/06 - Compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly-bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being saturated and acyclic
C07C 229/08 - Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
C12N 9/04 - Oxidoreductases (1.), e.g. luciferase acting on CHOH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)
Disclosed are nickel-containing complexation precursors having high complexation activity for bidentate phosphite ligands. Also disclosed are methods of making the complexation precursors. The disclosed method of generating the nickel-containing complexation precursor includes including contacting a nickel starting material with a reductant under conditions sufficient to generate a nickel-containing complexation precursor having at least about 1,500 ppmw sulfur in the form of sulfide.
The disclosure relates to polypeptides having carboxylic acid reductase (CAR) activity, including enzymes that catalyse the irreversible reduction of carboxylic acids, such as pimelic acid and adipic acid, to their respective semialdehydes. The enzymes have been engineered to have higher activity over a corresponding wild type enzyme. Provided herein are novel polypeptides and uses thereof related to the same.
Embodiments of the present invention relate to methods for the biosynthesis of di- or trifunctional C7 alkanes in the presence of isolated enzymes or in the presence of a recombinant host cell expressing those enzymes. The di- or trifunctional C7 alkanes are useful as intermediates in the production of nylon-7, nylon-7,x, nylon-x,7, and polyesters.
C08G 69/26 - Polyamides derived from amino carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
Methods are described herein that involve rotating or gently mixing nickel(II)-containing particles in a reaction vessel while heating the particles and flowing a reducing atmosphere through the reaction vessel for a time sufficient to generate free-flowing nickel metal (Ni(0)) from the nickel(II)-containing particles.
B22F 9/22 - Making metallic powder or suspensions thereofApparatus or devices specially adapted therefor using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
B01J 31/18 - Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony
B01J 37/18 - Reducing with gases containing free hydrogen
B01J 31/26 - Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups
24.
Enhanced extraction of impurities from mixture comprising nitriles
Disclosed herein are methods for recovering phosphorus-containing ligand from mixtures comprising organic mononitriles and organic dinitriles, using liquid-liquid extraction. Also disclosed are treatments to enhance extractability of the phosphorus-containing ligand.
This document describes polypeptides with dual CoA transferase and β-ketothiolase activities and variants thereof, use of such polypeptides in biosynthetic methods, and non-naturally occurring hosts comprising such polypeptides.
C12P 19/32 - Nucleotides having a condensed ring system containing a six-membered ring having two nitrogen atoms in the same-ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
26.
Integrated process for nitrile manufacture with enhanced liquid-liquid extraction
Phosphorus-containing ligands are recovered from mixtures comprising 3-pentenenitrile (3PN) and adiponitrile (ADN), using liquid-liquid extraction. ADN is produced by hydrocyanation of 3PN. The ADN is hydrogenated to produce a hexamethyiene diamine (HMD) and at least one byproduct including bis-hexamethylene triamine (BHMT) or 1,2-diaminocyclohexane. At least a portion of the HMD product or byproduct is used to enhance the liquid-liquid extraction to recover phosphorus-containing ligand.
C07C 209/48 - Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
This application describes methods, including non-naturally occurring methods, for biosynthesizing unsaturated pentahydrocarbons, such as isoprene and intermediates thereof, via the mevalonate pathway, as well as non-naturally occurring hosts for producing isoprene.
This application describes methods, including non-naturally occurring methods, for biosynthesizing 3-hydroxy-3-methylglutaryl-coA and intermediates thereof, as well as non-naturally occurring hosts for producing 3-hydroxy-3-methylglutaryl-coA. This application also describes methods, including non-naturally occurring methods, for biosynthesizing isoprene and intermediates thereof, as well as non-naturally occurring hosts for producing isoprene.
C12P 19/32 - Nucleotides having a condensed ring system containing a six-membered ring having two nitrogen atoms in the same-ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
The present invention relates to an improved process for addition of hydrogen cyanide across olefins and, in particular, to the use of a specific aluminum oxide to catalyze the reaction. The aluminum oxide catalyst must have total alkali metal and/or alkaline earth metal content, measured in the form of alkali metal oxide and/or alkaline earth metal oxide, of less than 3,000 ppm by weight.
C07C 255/22 - Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and carboxyl groups, other than cyano groups, bound to the same saturated acyclic carbon skeleton containing cyano groups and at least two carboxyl groups bound to the carbon skeleton
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
B01J 21/06 - Silicon, titanium, zirconium or hafniumOxides or hydroxides thereof
B01J 23/02 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the alkali- or alkaline earth metals or beryllium
The present disclosure provides novel polypeptides with 3-buten-2-ol dehydratase activity, polypeptides with catalytic activity in the conversion of 3-methyl-3-buten-2-ol to isoprene, and crystal structure data for one of such polypeptides. Methods of making and using the polypeptides and their related crystal structure data are also provided.
C08F 36/22 - Homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having three or more carbon-to-carbon double bonds
G01N 33/573 - ImmunoassayBiospecific binding assayMaterials therefor for enzymes or isoenzymes
A fiber and method for making the same is disclosed that comprises a surface treatment, wherein the surface treatment comprises at least one clay nanoparticle component present in an amount greater than 2000 ppm on the surface of the fiber. Also disclosed is a fiber and method for making the same, comprising a surface treatment, wherein the surface treatment comprises at least one clay nanoparticle component and excludes flourochemicals.
D06M 11/77 - Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereofSuch treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
D06M 23/08 - Processes in which the treating agent is applied in powder or granular form
D06M 11/79 - Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereofSuch treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
The present disclosure relates to methods for separating at least one amine chosen from diamines and omega-aminoacids from a feed mixture using a simulated moving bed (SMB) adsorptive technology.
C07C 229/08 - Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
33.
Materials and methods for producing alkenes and derivatives thereof
The present disclosure relates to processes for production of alkene products from their alkene precursors, such as 3-hydroxyacid and alcohols, via either (1) high temperature reactive distillation with steam contact at optimal pH, (2) solvent extraction and Mulzer dehydration, (3) solid phase adsorption, desorption into an organic solvent and catalytic reaction and (4) high temperature reactive distillation with steam contact at optimal pH followed by catalytic conversion.
C07C 1/24 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as hetero atoms by elimination of water
B01D 3/00 - Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
B01D 3/34 - Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
Described herein are processes and apparatus for the high purity and high concentration recovery of multivalent products via continuous ion exchange from aqueous solutions for further down-stream purification.
C01F 1/00 - Methods of preparing compounds of the metals beryllium, magnesium, aluminium, calcium, strontium, barium, radium, thorium, or the rare earths, in general
B01J 47/00 - Ion-exchange processes in generalApparatus therefor
C02F 1/42 - Treatment of water, waste water, or sewage by ion-exchange
B01J 47/014 - Ion-exchange processes in generalApparatus therefor in which the adsorbent properties of the ion-exchanger are involved, e.g. recovery of proteins or other high-molecular compounds
B01J 47/11 - Ion-exchange processes in generalApparatus therefor with moving ion-exchange materialIon-exchange processes in generalApparatus therefor with ion-exchange material in suspension or in fluidised-bed form in rotating beds
B01J 49/05 - Regeneration or reactivation of ion-exchangersApparatus therefor of fixed beds
C02F 1/20 - Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
A multipolymer fiber comprising a polyester phase formed from at least one polyester resin, present at between about 50 to about 95 percent by weight and a polyamide phase formed from at least one polyamide resin, present at between about 5 to about 50 percent by weight, wherein the polyamide phase is distinct from the polyester phase and comprises a plurality of polyamide fibrils dispersed in the polyester phase, and wherein the polyamide fibrils are separately distinguishable from each other.
D01D 5/253 - Formation of filaments, threads, or the like with a non-circular cross sectionSpinnerette packs therefor
A41D 13/00 - Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
D01F 6/90 - Monocomponent man-made filaments or the like of synthetic polymersManufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
D01F 6/92 - Monocomponent man-made filaments or the like of synthetic polymersManufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
D02G 3/44 - Yarns or threads characterised by the purpose for which they are designed
A41D 13/005 - Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches with controlled internal environment with controlled temperature
The present disclosure provides novel polypeptides with 3-buten-2-ol dehydratase activity, polypeptides with catalytic activity in the conversion of 3-methyl-3-buten-2-ol to isoprene, and crystal structure data for one of such polypeptides. Methods of making and using the polypeptides and their related crystal structure data are also provided.
C08F 36/22 - Homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having three or more carbon-to-carbon double bonds
This document describes biochemical pathways for producing 4-hydroxybutyrate, 4-aminobutyrate, putrescine or 1,4-butanediol by forming one or two terminal functional groups, comprised of amine or hydroxyl group, in a C5 backbone substrate such as 2-oxoglutarate or L-glutamate.
C07C 209/68 - Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
C07C 213/02 - Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
C07C 221/00 - Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
C07C 227/18 - Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
C07C 227/32 - Preparation of optical isomers by stereospecific synthesis
C08G 69/08 - Polyamides derived from amino carboxylic acids or from polyamines and polycarboxylic acids derived from amino carboxylic acids
C08G 69/26 - Polyamides derived from amino carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
This document describes materials and methods for, for example, producing 6-hydroxyhexanoic acid using a β-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. This document describes biochemical pathways for producing 6-hydroxyhexanoic acid using a β-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. 6-hydroxyhexanoic acid can be enzymatically converted to adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine or 1,6-hexanediol. This document also describes recombinant hosts producing 6-hydroxyhexanoic acid as well as adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine and 1,6-hexanediol.
C12P 13/00 - Preparation of nitrogen-containing organic compounds
C12P 19/32 - Nucleotides having a condensed ring system containing a six-membered ring having two nitrogen atoms in the same-ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
C07H 19/207 - Purine radicals with the saccharide radical being esterified by phosphoric or polyphosphoric acids the phosphoric or polyphosphoric acids being esterified by a further hydroxylic compound, e.g. flavine-adenine dinucleotide or nicotinamide-adenine dinucleotide
The document provides methods for biosynthesizing isobutene using one or more isolated enzymes such as one or more of a hydratase such as an enzyme classified under EC 4.2.1.- and a decarboxylating thioesterase, or using recombinant host cells expressing one or more such enzymes.
Disclosed herein is the preparation of woven fabrics suitable for use in manufacturing vehicle airbags. Such fabrics are woven from a plurality of polymeric, e.g., polyamide, warp and weft tapes which have preferably been slitted, preferably in the machine direction, from a thermoplastic polymer film, and preferably from such a film which has been drawn at least in the machine direction. The resulting fabrics exhibit both the relatively low basis weight, stiffness and small packing volume typical of nylon films, and the relatively high tear strength and high damage tolerance of yarn-based woven airbag fabrics.
B60R 21/235 - Inflatable members characterised by their material
D01D 5/42 - Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films
B29C 47/00 - Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor (extrusion blow-moulding B29C 49/04)
D02G 3/44 - Yarns or threads characterised by the purpose for which they are designed
D03D 13/00 - Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
D03D 15/00 - Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
This document describes biochemical pathways that include the production of 3-oxopent-4-enoyl-CoA by condensation of acryloyl-CoA and acetyl-CoA using a β-ketothiolase with a SER-HIS-HIS catalytic triad. These pathways described herein rely on enzymes such as, inter alia, dehydrogenases, dehydratases and β-ketothiolases.
C12P 19/32 - Nucleotides having a condensed ring system containing a six-membered ring having two nitrogen atoms in the same-ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
C12P 7/40 - Preparation of oxygen-containing organic compounds containing a carboxyl group
The present disclosure relates to methods for separating and purifying a long chain diacid from other long chain diacids, monocarboxylic acids, hydroxyl acids or alkanes by simulated or actual moving bed chromatography.
C07C 59/245 - Saturated compounds having more than one carboxyl group containing hydroxy or O-metal groups
C07C 51/42 - SeparationPurificationStabilisationUse of additives
B01D 15/18 - Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
C07C 51/47 - SeparationPurificationStabilisationUse of additives by solid-liquid treatmentSeparationPurificationStabilisationUse of additives by chemisorption
B01D 15/02 - Separating processes involving the treatment of liquids with solid sorbentsApparatus therefor with moving adsorbents
B01D 15/22 - Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the construction of the column
This document describes biochemical pathways for producing 1,3-butanediol using a polypetide having β-ketothiolase activity to form a 3-oxo-5-hydroxypentanoyl-CoA intermediate that can be enzymatically converted to 1,3-butanediol, as well as recombinant hosts producing 1,3-butanediol.
Disclosed herein are methods for recovering diphosphonite-containing compounds from mixtures comprising organic mononitriles and organic dinitriles, using multistage countercurrent liquid-liquid extraction. Recovery is enhanced with one or more method steps. In a first step, a portion of the heavy phase from the settling section of the first stage is recycled to the settling section of the first stage. In a second step, a portion of the light phase from the settling section of the first stage is recycled to the mixing section of the first stage. In a third step, the first stage takes place in a mixer-settler, a Lewis base is introduced into the settling section of the first stage, and a complex of Lewis acid and Lewis base is formed in this settling section. In a fourth step, a polyamine is added to the first stage.
yarns made of synthetic and wool fibers sold as an integral component of finished clothing items, namely, sweaters, jackets, pants, shirts, baseball caps, footwear
The present disclosure provides novel polypeptides with 3-buten-2-ol dehydratase activity, polypeptides with catalytic activity in the conversion of 3-methyl-3-buten-2-ol to isoprene, and crystal structure data for one of such polypeptides. Methods of making and using the polypeptides and their related crystal structure data are also provided.
Pentenenitrile oligomers formed in a process for isomerizing cis-2-pentenenitrile to 3-pentenenitrile are minimized in the presence of an aluminum oxide catalyst. The process comprises providing an aluminum oxide catalyst having an alkali metal and/or alkaline earth metal and/or iron content, measured in the form of alkali metal oxide and/or alkaline earth metal oxide and/or iron oxide, respectively of less than 5000 ppm by weight.
This document describes biochemical pathways for producing 6-hydroxyhexanoate methyl ester and hexanoic acid hexyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase and a monooxygenase, as well as recombinant hosts expressing one or more of such enzymes. 6-hydroxyhexanoate methyl esters and hexanoic acid hexyl ester can be enzymatically converted to adipic acid, adipate semialdehyde, 6-aminohexanoate, 6-hydroxyhexanoate, hexamethylenediamine, and 1,6-hexanediol.
C12P 13/00 - Preparation of nitrogen-containing organic compounds
C12P 7/64 - FatsFatty oilsEster-type waxesHigher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl groupOxidised oils or fats
C12P 7/24 - Preparation of oxygen-containing organic compounds containing a carbonyl group
C07C 59/01 - Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
C08G 63/06 - Polyesters derived from hydroxy carboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxy carboxylic acids
C12P 7/40 - Preparation of oxygen-containing organic compounds containing a carboxyl group
C07C 47/02 - Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
C07C 47/12 - Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing more than one —CHO group
C07C 59/325 - Saturated compounds having more than one carboxyl group containing —CHO groups
C07C 223/02 - Compounds containing amino and —CHO groups bound to the same carbon skeleton having amino groups bound to acyclic carbon atoms of the carbon skeleton
This document describes biochemical pathways for producing 5-hydroxypentanoate methyl ester and pentanoic acid pentyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase, and a monooxygenase, as well as recombinant hosts expressing one or more of such exogenous enzymes. 5-hydroxypentanoate methyl esters and pentanoic acid pentyl esters can be enzymatically converted to glutaric acid, 5-aminopentanoate, 5-hydroxypentanoate, cadaverine, or 1,5-pentanediol.
C07C 47/02 - Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
C12P 13/00 - Preparation of nitrogen-containing organic compounds
C12P 7/64 - FatsFatty oilsEster-type waxesHigher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl groupOxidised oils or fats
C12P 7/24 - Preparation of oxygen-containing organic compounds containing a carbonyl group
C07C 59/01 - Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
C08G 63/06 - Polyesters derived from hydroxy carboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxy carboxylic acids
C12P 7/40 - Preparation of oxygen-containing organic compounds containing a carboxyl group
C07C 47/12 - Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing more than one —CHO group
C07C 59/325 - Saturated compounds having more than one carboxyl group containing —CHO groups
C07C 223/02 - Compounds containing amino and —CHO groups bound to the same carbon skeleton having amino groups bound to acyclic carbon atoms of the carbon skeleton
This document describes biochemical pathways for producing glutaric acid, 5-aminopentanoic acid, 5-hydroxypentanoic acid, cadaverine or 1,5-pentanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C5 backbone substrate such as 2-oxoglutarate.
C08G 69/26 - Polyamides derived from amino carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
This document describes biochemical pathways for producing 2(E)-heptenedioyl-CoA methyl ester from precursors such as 2-oxo-glutarate, acetyl-CoA, or succinyl-CoA using one or more of a fatty acid O-methyltransferase, a thioesterase, a CoA-transferase, a CoA ligase, as well as recombinant hosts expressing one or more of such enzymes. 2(E)-heptenedioyl-CoA methyl ester can be enzymatically converted to pimeloyl-CoA using a trans-2-enoyl-CoA reductase, and a methylesterase. Pimeloyl-CoA can be enzymatically converted to pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol.
This document describes biochemical pathways for producing 2,3-dehydroadipyl-CoA methyl ester from precursors such as 2-oxoglutarate using one or more of a fatty acid O-methyltransferase, a thioesterase, a CoA-transferase and a CoA ligase, as well as recombinant hosts expressing one or more of such enzymes. 2,3-dehydroadipyl-CoA methyl ester can be enzymatically converted to adipyl-CoA using a trans-2-enoyl-CoA reductase, and a methylesterase, which in turn can be enzymatically converted to adipic acid, 6-aminohexanoate, 6-hydroxyhexanoate, caprolactam, hexamethylenediamine, or 1,6-hexanediol.
This document describes biochemical pathways for producing 7-hydroxyheptanoate methyl ester and heptanoic acid heptyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase, and a monooxygenase, as well as recombinant hosts expressing one or more of such exogenous enzymes. 7-hydroxyheptanoate methyl esters and heptanoic acid heptyl esters can be enzymatically converted to pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol.
C12P 13/00 - Preparation of nitrogen-containing organic compounds
C12P 7/64 - FatsFatty oilsEster-type waxesHigher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl groupOxidised oils or fats
C12P 7/24 - Preparation of oxygen-containing organic compounds containing a carbonyl group
C07C 59/01 - Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
C08G 63/06 - Polyesters derived from hydroxy carboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxy carboxylic acids
C12P 7/40 - Preparation of oxygen-containing organic compounds containing a carboxyl group
C07C 47/02 - Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
C07C 47/12 - Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing more than one —CHO group
C07C 59/325 - Saturated compounds having more than one carboxyl group containing —CHO groups
C07C 223/02 - Compounds containing amino and —CHO groups bound to the same carbon skeleton having amino groups bound to acyclic carbon atoms of the carbon skeleton
This document describes biochemical pathways for producing glutaric acid, 5-aminopentanoic acid, 5-hydroxypentanoic acid, cadaverine or 1,5-pentanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C5 backbone substrate such as malonyl-CoA or malonyl-[acp].
C12N 1/00 - Microorganisms, e.g. protozoaCompositions thereofProcesses of propagating, maintaining or preserving microorganisms or compositions thereofProcesses of preparing or isolating a composition containing a microorganismCulture media therefor
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
C12P 13/00 - Preparation of nitrogen-containing organic compounds
C07C 229/08 - Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
This document describes biochemical pathways for producing 2,4-pentadienoyl-CoA by forming one or two terminal functional groups, comprised of carboxyl or hydroxyl group, in a C5 backbone substrate such as glutaryl-CoA, glutaryl-[acp] or glutarate methyl ester. 2,4-pentadienoyl-CoA can be enzymatically converted to 1,3-butadiene.
C07C 229/08 - Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
This document describes biochemical pathways for producing 2-aminopimelate from 2,6-diaminopimelate, and methods for converting 2-aminopimelate to one or more of adipic acid, adipate semialdehyde, caprolactam, 6-aminohexanoic acid, 6-hexanoic acid, hexamethylenediamine, or 1,6-hexanediol by decarboxylating 2-aminopimelate into a six carbon chain aliphatic backbone and enzymatically forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in the backbone.
Embodiments of the present invention relate to methods for the biosynthesis of di- or trifunctional C7 alkanes in the presence of isolated enzymes or in the presence of a recombinant host cell expressing those enzymes. The di- or trifunctional C7 alkanes are useful as intermediates in the production of nylon-7, nylon-7,x, nylon-x,7, and polyesters.
C08G 69/26 - Polyamides derived from amino carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
The invention provides methods useful in the industrial scale process for hydrocyanation of butadiene to adiponitrile for recycle of unwanted byproduct 2-methyl-3-butenenitrile (2M3BN) by conversion to process intermediate pentenenitrile. The invention provides a process for generating catalysts useful for carrying out the hydrocyanation of butadiene to adiponitrile, the process comprising contacting the 2M3BN and a solution of a nickel-ligand catalyst in cis-2-pentenenitrile (cis-2PN), trans-2-pentenenitrile (trans-2PN), or a mixture thereof. The improved methods of the invention can provide improved catalyst solubility for bidentate ligands without a requirement for a Lewis acid catalyst promoter such as zinc chloride to be present.
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
C07C 253/30 - Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
B01J 37/00 - Processes, in general, for preparing catalystsProcesses, in general, for activation of catalysts
B01J 31/18 - Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony
2 is a bidentate ligand and A is an unsaturated compound, can be rate-limited by the solubility of the catalytic complex. The present invention concerns solvent compositions for the nickel-ligand complex comprising mixtures of unsaturated nitriles that provide for increased metal solubility, particularly in the absence of a Lewis acid promoter, resulting in higher hydrocyanation reaction rates in an industrial-scale process for production of important nylon manufacturing intermediates. The mixed nitrile solvent compositions can include mixtures of pentenenitriles and/or methylbutenenitriles. The mixtures of mixed unsaturated nitriles can be, at least in part, from recycle streams from the hydrocyanation reaction for which the nickel-bidentate ligand complexes are used as catalysts.
B01J 31/18 - Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony
B01J 37/00 - Processes, in general, for preparing catalystsProcesses, in general, for activation of catalysts
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
60.
Methods of producing 6-carbon chemicals via CoA-dependent carbon chain elongation associated with carbon storage
This document describes biochemical pathways for producing adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine or 1,6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C6 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on CoA-dependent elongation enzymes or analogues enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
Disclosed is a process for isomerizing cis-2-pentenenitrile to 3-pentenenitrile in the presence of a non-aluminum metal oxide catalyst, wherein: (a) the metal in the catalyst has an oxidation state in the range from +1 to +4; (b) the metal has a cation radius in the range from 0.35 to 1.0 Å; (c) the metal of the catalyst has a polarizing power, C/r, is in the range from 2 to >8, wherein C is the charge of the metal and r is the ionic radius in Å; (d) the bond network of the catalyst has a % ionicity of >20; (e) the metal oxide has an acidity strength in the range from strong to very weak; and (f) the metal oxide has a basicity (nucleophilicity) strength of weak to strong.
C07C 235/30 - Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being unsaturated and containing rings other than six-membered aromatic rings
This document describes biochemical pathways for producing adipic acid, caprolactam, 6-aminohexanoic acid, 6-hydroxyhexanoic acid, hexamethylenediamine or 1,6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C6; backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on CoA-dependent elongation enzymes or analogues enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
C12N 15/52 - Genes encoding for enzymes or proenzymes
C12N 9/00 - Enzymes, e.g. ligases (6.)ProenzymesCompositions thereofProcesses for preparing, activating, inhibiting, separating, or purifying enzymes
C12N 9/16 - Hydrolases (3.) acting on ester bonds (3.1)
C12N 9/80 - Hydrolases (3.) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides
C12N 9/86 - Hydrolases (3.) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
3) where each X is oxygen or a bond, wherein the monodentate ligand has a rate of hydrolysis greater than the rate of hydrolysis of the bidentate or tridentate ligand in the presence of water in a hydrocyanation reaction milieu, and thereby preserve concentrations and proportions of the bidentate and/or tridentate ligand(s) in the ligand blend.
The invention provides a method of forming a phosphonate diester compound from a ligand hydrolysis product (LHP) of a phosphite ligand used in a nickel-phosphite hydrocyanation catalyst, such as for conversion of 3-pentenenitrile to adiponitrile, which serves to eliminate acidic LHP compound for a hydrocyanation reaction milieu where the acidic LHP can catalyze further catalyst ligand destruction. The invention further provides phosphonate disester compounds prepared by alkylation of diarylphosphite LHP in the presence of a nickel-phosphite catalyst comprising a bidentate ligand, and a continuous hydrocyanation process for production of adiponitrile wherein catalyst ligand breakdown is inhibited through inactivation of ligand hydrolysis products towards further breakdown. A method of stabilizing a hydrocyanation catalyst is provided.
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
This document describes biochemical pathways for producing butadiene by forming two vinyl groups in a butadiene synthesis substrate. These pathways described herein rely on enzymes such as, inter alia, a decarboxylating thioesterase, cytochrome P450, or dehydratases for the final enzymatic step.
This document describes biochemical pathways for producing isoprene by forming two vinyl groups in a central precursor produced from isobutyryl-CoA, 3-methyl-2-oxopentanoate, or 4-methyl-2-oxopentanoate as well as recombinant hosts for producing isoprene.
Disclosed herein are methods for recovering diphosphite-containing compounds from mixtures comprising organic mononitriles and organic dinitriles, using liquid-liquid extraction. Also disclosed are treatments to enhance extractability of the diphosphite-containing compounds.
Disclosed herein are methods for recovering diphosphite-containing compounds from mixtures comprising organic mononitriles and organic dinitriles, using liquid-liquid extraction. Also disclosed are treatments to enhance extractability of the diphosphite-containing compounds.
Disclosed herein are methods for recovering diphosphite-containing compounds from mixtures comprising organic mononitriles and organic dinitriles, using liquid-liquid extraction. Also disclosed are treatments to enhance extractability of the diphosphite-containing compounds.
Claimed is a process for producing a phosphorus-containing ligand, preferably a diphosphite ligand structure (DLS) such as structure I. The method includes contacting a phosphorochloridite (structure II) with a compound having the structure X—OH (which can be a bisaryl compound), and a tertiary organic amine to provide structure I′ and as preferred embodiment structure I.
Disclosed herein are methods for recovering diphosphite-containing compounds from mixtures comprising organic mononitriles and organic dinitriles, using liquid-liquid extraction. Also disclosed are pre-treatments to enhance extractability of the diphosphite-containing compounds.
B01D 11/04 - Solvent extraction of solutions which are liquid
B01J 31/18 - Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony
B01J 31/26 - Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups
This document describes biochemical pathways for producing pimelic acid, 7-hydroxyheptanoic acid, 7-aminoheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the CoA-dependent elongation enzymes or analog enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
Embodiments of the present invention relate to methods for the biosynthesis of di- or trifunctional C7 alkanes in the presence of isolated enzymes or in the presence of a recombinant host cell expressing those enzymes. The di- or trifunctional C7 alkanes are useful as intermediates in the production of nylon-7, nylon-7,x, nylon-x,7, and polyesters.
C08G 69/26 - Polyamides derived from amino carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
nitrile. The process can include feeding 3-pentenenitrile and HCN to a hydrocyanation reaction zone that includes a Lewis acid promoter, nickel, and a phosphorus-containing ligand. In various embodiments, the process can also include controlling water concentration within the hydrocyanation reaction zone sufficient to maintain a high activity of the ligand catalyst complex while recycling at least a portion of the ligand catalyst complex.
C07C 253/00 - Preparation of carboxylic acid nitriles
C07C 253/08 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds
C07C 253/18 - Preparation of carboxylic acid nitriles by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
78.
Flame resistant yarns and fabrics including partially aromatic polyamide fiber and other flame resistant fibers
Disclosed are technical fibers and yarns made with partially aromatic polyamides and a fiber having vapor phase action such as an FR cellulosic fiber. Fabrics made from such fibers and yarns demonstrate superior flame retardancy over traditional flame retardant nylon 6,6 fabrics. Further, the disclosed fibers and yarns, when blended with other flame retardant fibers, do not demonstrate the dangerous “scaffolding effect” common with flame retardant nylon 6,6 blended fabrics.
This document describes biochemical pathways for producing adipic acid, 6-aminohexanoic acid, 6-hydroxhexanoic acid, hexamethylenediamine, caprolactam, or 1,6-hexanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C6 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the enzymes or homologs accepting methyl ester shielded dicarboxylic acid substrates.
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate produced from chorismate or benzoate. These pathways, metabolic engineering and cultivation strategies described herein rely on the anaerobic benzoyl-CoA degradation pathway enzymes.
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming one or two terminal functional groups, each comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the C1 elongation enzymes or homolog associated with coenzyme B biosynthesis.
This document describes biochemical pathways for producing one or more of pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine and 1,7-heptanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C7 aliphatic backbone substrate produced from succinate semialdehyde or pyruvate. These pathways, metabolic engineering and cultivation strategies described herein rely on the aldol condensation of succinate semialdehyde and pyruvate.
C12P 37/02 - Preparation of compounds having a 4-thia-1-azabicyclo [3.2.0] heptane ring system, e.g. penicillin in presence of phenylacetic acid or phenylacetamide or their derivatives
C12N 15/00 - Mutation or genetic engineeringDNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purificationUse of hosts therefor
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
C12P 7/46 - Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
C12P 7/18 - Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
This document describes biochemical pathways for producing adipic acid, caprolactam, 6-aminohexanoic acid, 6-hydroxyhexanoic acid, hexamethylenediamine or 1,6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C6 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on CoA-dependent elongation enzymes or analogs enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
The document provides methods for biosynthesizing isobutene using one or more isolated enzymes such as one or more of an enoyl-CoA dehydratase, a 2-hydroxyacyl-CoA dehydratase, an isovaleryl-CoA/acyl-CoA dehydrogenase and a mevalonate diphosphate decarboxylase, or using recombinant host cells expressing one or more such enzymes.
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on enzymes or homologs accepting methyl ester shielded dicarboxylic acid substrates.
C12N 15/00 - Mutation or genetic engineeringDNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purificationUse of hosts therefor
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
This document describes biochemical pathways for producing butadiene by forming two vinyl groups in a butadiene synthesis substrate. These pathways described herein rely on enzymes such as mevalonate diphosphate decarboxylase, isoprene synthase, and dehydratases for the final enzymatic step.
The present invention relates to a method of preparing a nickel complex including nickel and at least one phosphorus-containing ligand by reacting at least a portion of a nickel metal with at least one phosphorus-containing ligand. The nickel metal is prepared from a nickel composition including nickel(II).
Nickel(II) compositions for use in manufacturing nickel metal (Ni(0)) compositions, and specifically to methods of making basic nickel carbonates used to produce nickel metal compositions are disclosed. By varying the molar ratios of carbonates and bicarbonates to nickel salts, the methods provide basic nickel carbonates that produce superior nickel metal-containing solids that are well-suited to forming nickel-ligand complexes with phosphorus-containing ligands. The phosphorus-containing ligands can be monodentate or bidentate phosphorus-containing ligands.
Adiponitrile is made by reacting 3-pentenenitrile with hydrogen cyanide. The 3-pentenenitrile is made by reacting 1,3-butadiene with hydrogen cyanide and by isomerizing 2-methyl-3-butenenitrile. Both reactions take place in the presence of a catalyst comprising zero valent nickel and a phosphorus-containing ligand. The ligand is partially degraded by hydrolysis or oxidation. Phosphorus-containing ligand degradation products are removed during the production of 3-pentenenitrile and adiponitrile.
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
92.
Flame retardant fibers, yarns, and fabrics made therefrom
Disclosed are technical fibers and yarns made with partially aromatic polyamides and non-halogenated flame retardant additives. Fabrics made from such fibers and yarns demonstrate superior flame retardancy over traditional flame retardant nylon 6,6 fabrics. Further, the disclosed fibers and yarns, when blended with other flame retardant fibers, do not demonstrate the dangerous “scaffolding effect” common with flame retardant nylon 6,6 blended fabrics.
D04H 1/4382 - Stretched reticular film fibresComposite fibresMixed fibresUltrafine fibresFibres for artificial leather
D04H 1/42 - Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
The invention relates to methods for enriching monomer content in a cycloalkane oxidation process mixed organic waste stream. In particular, the methods involve combining a biocatalyst with a mixed organic waste stream from a cycloalkane oxidation process, and enzymatically converting dimeric and/or oligomeric components of said waste stream into monomeric components. The methods may enrich the content of diacids, adipic acid, and/or other α,ω-difunctional C6 alkanes in the mixed organic waste stream. Additionally, the treated mixed organic waste streams may have improved burning efficiency.
C12P 1/02 - Preparation of compounds or compositions, not provided for in groups , by using microorganisms or enzymesGeneral processes for the preparation of compounds or compositions by using microorganisms or enzymes by using fungi
C12P 7/40 - Preparation of oxygen-containing organic compounds containing a carboxyl group
The invention relates to methods for enriching monomer content in a cycloalkane oxidation process mixed organic waste stream. In particular, the methods involve combining a biocatalyst with a mixed organic waste stream from a cycloalkane oxidation process, and enzymatically converting dimeric and/or oligomeric components of said waste stream into monomeric components. The methods may enrich the content of diacids, adipic acid, and/or other α,ω-difunctional C6 alkanes in the mixed organic waste stream. Additionally, the treated mixed organic waste streams may have improved burning efficiency.
C02F 3/34 - Biological treatment of water, waste water, or sewage characterised by the microorganisms used
C12P 1/02 - Preparation of compounds or compositions, not provided for in groups , by using microorganisms or enzymesGeneral processes for the preparation of compounds or compositions by using microorganisms or enzymes by using fungi
Adiponitrile is made by reacting 3-pentenenitrile with hydrogen cyanide. The 3-pentenenitrile is made by reacting 1,3-butadiene with hydrogen cyanide. The catalyst for the reaction of 1,3-butadiene with hydrogen cyanide to make 3-pentenenitrile is recycled. At least a portion of the recycled catalyst is purified by an extraction process, which separates catalyst degradation products and reaction byproduct from the catalyst.
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
An improved multi-reaction zone process provides for improved nitrile product quality and yield. In a first reaction zone, 1,3-butadiene is reacted with hydrogen cyanide in the presence of a catalyst to produce pentenenitriles comprising 3-pentenenitrile and 2-methyl-3-butenenitrile. In a second reaction zone, 2-methyl-3-butenenitrile, recovered from the first reaction zone, is isomerized to 3-pentenenitrile. In an optional third reaction zone, 3-pentenenitrile recovered from the first and second reaction zones is reacted with hydrogen cyanide in the presence of a catalyst and a Lewis acid to produce adiponitrile. A portion of the first catalyst is purified and recycled. Zero valent nickel is added to the purified first catalyst before it is recycled.
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
Adiponitrile is made by reacting 3-pentenenitrile with hydrogen cyanide. The 3-pentenenitrile is made by reacting 1,3-butadiene with hydrogen cyanide. The catalyst for the reaction of 1,3-butadiene with hydrogen cyanide to make 3-pentenenitrile is recycled. At least a portion of the recycled catalyst is purified by an extraction process, which separates catalyst degradation products and reaction byproducts, such as mononitriles having 9 carbon atoms, from the catalyst.
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
Adiponitrile is made by reacting 3-pentenenitrile with hydrogen cyanide. The 3-pentenenitrile is made by reacting 1,3-butadiene with hydrogen cyanide. The 1,3-butadiene feed includes a small amount of tertiary-butylcatechol. The catalyst for the reaction of 1,3-butadiene with hydrogen cyanide to make 3-pentenenitrile is recycled. At least a portion of the recycled catalyst is purified by an extraction process.
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
Adiponitrile is made by reacting 3-pentenenitrile with hydrogen cyanide. The 3-pentenenitrile is made by reacting 1,3-butadiene with hydrogen cyanide and by isomerizing 2-methyl-3-butenenitrile. Phenolic compounds, such as phenol and cresols, are present as a catalyst impurity or as a catalyst degradation product. Phenolic compounds are removed during the nitrile manufacturing process.
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
Adiponitrile is made by reacting 3-pentenenitrile with hydrogen cyanide. The 3-pentenenitrile is made by reacting 1,3-butadiene with hydrogen cyanide and by isomerizing 2-methyl-3-butenenitrile. The reaction of 1,3-butadiene with hydrogen cyanide to produce 3-pentenenitrile also produces small amounts of dinitrile compounds, including adiponitrile (ADN) and methylglutaronitrile (MGN). Methylglutaronitrile is removed to provide an adiponitrile-enriched stream, which is used in a catalyst purification step.
C07C 253/10 - Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds