An improved auxiliary power module for use with electric vehicles is provided. The auxiliary power module includes a reconfigurable dual active bridge converter for providing either of a voltage-fed input or a current-fed input to a primary-side full bridge. The auxiliary power module also includes a current-fed output port that integrates an interleaved buck stage and presents an ultra-wide voltage coverage. The auxiliary power module achieves low switching currents on the secondary-side of the dual active bridge converter with low current stresses on the output port, which reduces losses and the transformer turn ratio when compared to conventional topologies.
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
A power conversion system including a triple active bridge (TAB) is provided. The system includes a power factor correction (PFC) module and a three port converter (TPC) module, with no post-regulation or additional stages required. The TPC module includes an OBC full-bridge and an APM full-bridge, each being inductively coupled to the output of the PFC full-bridge, thereby forming the TAB. The OBC full-bridge is adapted to convert an AC input into a high-voltage DC output for a high-voltage battery, and the APM full-bridge is adapted to convert an AC input into a low-voltage DC output for a low-voltage battery. The power conversion system can accept a single-phase AC input and a three-phase AC input, has a lower current stress as compared to prior art TPCs, and freely transfers power from among any ports.
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
B60L 1/00 - Supplying electric power to auxiliary equipment of electrically-propelled vehicles
B60L 53/22 - Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
B60L 58/20 - Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
H02M 1/42 - Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
H02M 7/00 - Conversion of AC power input into DC power outputConversion of DC power input into AC power output
H02M 7/219 - Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
H02M 7/86 - Conversion of AC power input into DC power outputConversion of DC power input into AC power output with possibility of reversal by dynamic converters
H02M 1/10 - Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from AC or DC
3.
INTEGRATED ON-BOARD CHARGER AND AUXILIARY POWER MODULE USING A TRIPLE ACTIVE BRIDGE FOR ELECTRIC VEHICLES
A power conversion system including a triple active bridge (TAB) is provided. The system includes a power factor correction (PFC) module and a three port converter (TPC) module, with no post-regulation or additional stages required. The TPC module includes an OBC full-bridge and an APM full-bridge, each being inductively coupled to the output of the PFC full-bridge, thereby forming the TAB. The OBC full-bridge is adapted to convert an AC input into a high-voltage DC output for a high-voltage battery, and the APM full-bridge is adapted to convert an AC input into a low-voltage DC output for a low-voltage battery. The power conversion system can accept a single-phase AC input and a three-phase AC input, has a lower current stress as compared to prior art TPCs, and freely transfers power from among any ports.
H02M 1/42 - Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
H02M 7/219 - Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
H02M 7/66 - Conversion of AC power input into DC power outputConversion of DC power input into AC power output with possibility of reversal
H02M 7/68 - Conversion of AC power input into DC power outputConversion of DC power input into AC power output with possibility of reversal by static converters
H02M 7/86 - Conversion of AC power input into DC power outputConversion of DC power input into AC power output with possibility of reversal by dynamic converters
A single-phase AC/DC electric power conversion apparatus includes an indirect matrix converter having an input interface to receive a first alternating current (AC) signal and an output interface to produce a second AC signal, where the first AC signal has a grid frequency. A transformer has a primary winding and an electrically isolated and magnetically coupled secondary winding. A coupling inductor is connected in series between the output interface of the indirect matrix converter and the primary winding. An H-bridge switching arrangement is connected to the secondary winding and produces an output signal having a DC component and at least one AC component. The at least one AC component has a second order harmonic of the grid frequency. An active filter reduces the second order harmonic AC component. A modular conversion apparatus for three-phase power replicates the single-phase apparatus as a module for each phase and omits the active filter.
H02M 1/12 - Arrangements for reducing harmonics from AC input or output
H02M 1/15 - Arrangements for reducing ripples from DC input or output using active elements
H02M 1/42 - Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
H02M 5/458 - Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 7/48 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
A driver circuit has a gate drive terminal that produces a gate drive signal to control paralleled power semiconductor switches, such as GaN high electron mobility transistor (HEMT) devices. One of the switches is closest to the gate drive terminal such that its gate drive loop inductance is smaller than the remaining switches that are farther away having a larger loop inductance. An additional resistor or gate-source capacitor is provided in the gate drive circuit of the closest switch which increases the total gate resistance of the closest switch compared to the remaining switches, which delays the turn off time of the closest switch. The delay permits zero voltage switching turn-off of the remaining switches to reduce noise. The closest switch is hard switched off but has the smallest loop inductance, which allows optimized turn off.
A switching device is controlled by a microprocessor to selectively configure the circuit between a current measurement mode and a calibration mode. When the switch is set to the "on" state, the circuit acts as a normal prior art circuit, with the output Vout being read by the microprocessor to determine the current to the load. However, when the switch is set to the "off state, a small value resistor (which may be roughly three orders of magnitude greater than Rshunt) connects the inputs of the measuring circuit so that the circuit can generate an output Vout corresponding to the zero load current. By connecting the V+ and V_ inputs together with a low resistance resistor, the no-load condition Vdiff = V+ - V- ≈ 0 applies. In this state, the no-load offset can be determined by measuring the output voltage of the circuit without turning off the load.
G01R 19/25 - Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
G01R 1/20 - Modifications of basic electric elements for use in electric measuring instrumentsStructural combinations of such elements with such instruments
8.
FILTER APPARATUS AND METHOD FOR BRUSHLESS DC MOTORS
In a multi-phase brushless DC motor, a zero crossing N-bit filter includes a comparator and a phase multiplexer. The phase multiplexer connects each motor phase to each of a positive and a negative input of the comparator, with a switch in each connection to form a switch array. A microprocessor is disposed to operate the switches, and is configured to measure a BEMF for a first phase by opening the switches connecting all other phases to the positive input of the comparator and by opening the switch connecting the first phase being measured to the negative input of said comparator. The comparators output is received by a shift register. The microprocessor is configured to respond to a zero crossing when a majority of bits in the shift register change between high and low.
H02P 6/00 - Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor positionElectronic commutators therefor
H02P 7/00 - Arrangements for regulating or controlling the speed or torque of electric DC motors
9.
Filter apparatus and method for brushless DC motors
In a multi-phase brushless DC motor, a zero crossing N-bit filter includes a comparator and a phase multiplexer. The phase multiplexer connects each motor phase to each of a positive and a negative input of the comparator, with a switch in each connection to form a switch array. A microprocessor is disposed to operate the switches, and is configured to measure a BEMF for a first phase by opening the switches connecting all other phases to the positive input of the comparator and by opening the switch connecting the first phase being measured to the negative input of said comparator. The comparators output is received by a shift register. The microprocessor is configured to respond to a zero crossing when a majority of bits in the shift register change between high and low.
H02P 6/00 - Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor positionElectronic commutators therefor
A vehicle lamp has a housing, a light emitter mounted within said housing, a lens disposed in cooperation with the housing and a light blade element. The light blade element redirects light in a direction different from the principal axis of the lamp. The light blade element may have multiple faces. The light blade element is disposed in cooperation with a low profile reflector array to adequately supply light to a side light while occupying an advantageously small portion of the overall dimensions of the light housing and main reflector.
F21V 9/08 - Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromaticElements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for reducing intensity of light