Compositions comprising a cartilage sheet comprising a plurality of interconnected cartilage tiles and a biocompatible carrier are provided. Methods of manufacturing cartilage compositions comprising a cartilage sheet comprising a plurality of interconnected cartilage tiles are also provided.
There is disclosed a packaged allograft implant configured for implantation in a human recipient. In an embodiment, the packaged allograft implant includes an acellular dermal matrix sheet having a top surface and a bottom surface in opposition to one another, a perimeter surrounding the top surface and the bottom surface, and a thickness extending between the top surface and the bottom surface. The packaged allograft implant further includes a mesh pattern extending across at least a portion of the top surface and the bottom surface of the acellular dermal matrix sheet, the mesh pattern providing through-holes extending between the top surface and the bottom surface of the acellular dermal matrix sheet, and the mesh pattern having a plurality of mesh lines extending in a first direction and a second direction. The first direction and the second direction are orthogonal to one another so as to allow a given amount of stretch in each of the first direction and the second direction. Other embodiments are also disclosed.
There is disclosed a packaged allograft implant configured for implantation in a human recipient. In an embodiment, the packaged allograft implant includes an acellular dermal matrix sheet having a top surface and a bottom surface in opposition to one another, a perimeter surrounding the top surface and the bottom surface, and a thickness extending between the top surface and the bottom surface. The packaged allograft implant further includes a mesh pattern extending across at least a portion of the top surface and the bottom surface of the acellular dermal matrix sheet, the mesh pattern providing through-holes extending between the top surface and the bottom surface of the acellular dermal matrix sheet, and the mesh pattern having a plurality of mesh lines extending in a first direction and a second direction. The first direction and the second direction are orthogonal to one another so as to allow a given amount of stretch in each of the first direction and the second direction. Other embodiments are also disclosed.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/36 - Materials for prostheses or for coating prostheses containing ingredients of undetermined constitution or reaction products thereof
A61L 27/50 - Materials characterised by their function or physical properties
4.
Automated system and methods for tissue demineralization
Systems and methods for the automated demineralization of bone and decellularization of soft tissue include a mixing assembly communicatively coupled with a control and reporting system. The mixing assembly includes a housing that supports a cannister sub-assembly forming a mixing chamber having a reagent inlet, a reagent outlet, and an internal fluid agitator. A motor is operably coupled with the agitator and configured to spin the agitator in first and second directions relative to the cannister, thereby agitating fluid contained within the mixing chamber. At least one pump is configured to progressively inject measured quantities of a plurality of reagents into the mixing chamber. The associated control and reporting system includes a user terminal that displays a graphical user interface enabling a user to initiate an automated demineralization or decellularization procedure in which the mixing assembly demineralizes tissue placed within the mixing chamber. Other embodiments are also disclosed.
B01F 27/808 - Mixers with rotary stirring devices in fixed receptaclesKneaders with stirrers rotating about a substantially vertical axis with stirrers driven from the bottom of the receptacle
A61L 27/36 - Materials for prostheses or for coating prostheses containing ingredients of undetermined constitution or reaction products thereof
B01F 27/115 - Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
There is disclosed apparatus for effecting osteochondral restoration. In an embodiment, the apparatus includes a tube having a distal end, a proximal end and a lumen extending therebetween. A drill shaft is rotatably disposed in the lumen of the tube, the drill shaft comprising a distal end and a proximal end. At least one cutting blade is disposed at the distal end of the drill shaft. A coring housing extends from the distal end of the tube and disposed around the at least one cutting blade, the coring housing terminating in a distal cutting surface. Other embodiments are also disclosed.
There is disclosed apparatus for effecting osteochondral restoration. In an embodiment, the apparatus includes a tube having a distal end, a proximal end and a lumen extending therebetween. A drill shaft is rotatably disposed in the lumen of the tube, the drill shaft comprising a distal end and a proximal end. At least one cutting blade is disposed at the distal end of the drill shaft. A coring housing extends from the distal end of the tube and disposed around the at least one cutting blade, the coring housing terminating in a distal cutting surface. Other embodiments are also disclosed.
There is disclosed apparatus for effecting osteochondral restoration. In an embodiment, the apparatus includes a tube having a distal end, a proximal end and a lumen extending therebetween. A drill shaft is rotatably disposed in the lumen of the tube, the drill shaft comprising a distal end and a proximal end. At least one cutting blade is disposed at the distal end of the drill shaft. A coring housing extends from the distal end of the tube and disposed around the at least one cutting blade, the coring housing terminating in a distal cutting surface. Other embodiments are also disclosed.
A61B 17/16 - Instruments for performing osteoclasisDrills or chisels for bonesTrepans
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
Provided are enriched tissue extracts and methods of making and using such extracts. The enriched tissue extracts contain biologically active components. Some extracts produced by the methods contain extracellular vesicles. The methods can involve administering a physical stress on a biological sample comprising live cells or otherwise stimulating the live cells of the biological sample. Also contemplated are methods in which the biological sample does not contain live cells. The biological sample is incubated in an extraction solution for a period of time sufficient for extraction of biologically active components from the biological sample. Methods of using the extracts, or extracellular vesicles isolated therefrom, therapeutically and for in vitro purposes are also provided.
Periosteum harvesting and processing systems and methods enable rapid, efficient, and repeatable harvesting of periosteum tissue from human long bones and processing of the tissue into individual fibers for use in strengthening surgical allograft products. One harvesting and processing method involves providing a human long bone, securing the long bone between two rotating live centers, scraping, using one of a plurality of harvesting tools selected from a harvesting and processing kit, periosteum tissue from the long bone, executing a first wash cycle comprising a hydrogen peroxide wash, executing a second wash cycle comprising an isopropyl alcohol wash, executing a third wash cycle comprising a phosphate buffered saline wash, compressing the periosteum tissue to remove excess fluid, cryofracturing the tissue until a desired fiber size is achieved, and separating the periosteum tissue into individual periosteum fibers having the desired fiber size. Other embodiments are also disclosed.
A pre-sutured allograft construct and method of manufacture for repairing, replacing, reconstructing, or augmenting a hip or shoulder labrum may include a folded tissue portion extending from a first end to a second end and forming top, middle, and bottom folds. A stitched pattern secures the folded tissue portion into a graft roll having an overall length extending from a first adjustable region, through a central region, and through a second adjustable region. A continuous series of whip stitches extends from the first adjustable region, through the central region, and through the second adjustable region. A series of triple circumferential stitches overlays the whip stitches in the first and the second adjustable regions, while a series of circumferential stitches alternates with the whip stitches in the central region. The construct is pre-manufactured as an allograft product, but is adjustable during the surgical procedure within the body. Other embodiments are also disclosed.
There is disclosed a system and methods for safely and securely gripping osseous-based tissue during allograft processing. One embodiment includes a first forceps half pivotally coupled to a second forceps half, where the first and the second forceps halves combine to form a handle portion and a head portion. The handle portion may define a first longitudinal axis, and the head portion may define a second longitudinal axis that intersects the first longitudinal axis at a varying head angle. The first and the second halves move between an open position in which the first and second forceps halves at the head portion are separated and a closed position in which the first and second forceps halves at the head portion are together. The forceps may also include an open-biasing spring element attached between the first and second forceps halves and a selective locking mechanism. Other embodiments are also disclosed.
An extraction system for testing microbial contamination includes a biocompatible outer vessel that has a side wall and a biocompatible suspension system that is positionable within an interior of the biocompatible outer vessel. The biocompatible suspension system includes a horizontal member on which a sample may be supported and a securement mechanism that is engagable with the side wall of the biocompatible outer vessel to maintain the suspension system at a desired position within the biocompatible outer vessel.
G01N 1/08 - Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit
B01J 19/10 - Processes employing the direct application of electric or wave energy, or particle radiationApparatus therefor employing sonic or ultrasonic vibrations
C12Q 1/00 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions
13.
PRE-SHAPED ALLOGRAFT IMPLANT FOR RECONSTRUCTIVE SURGICAL USE AND METHODS OF MANUFACTURE AND USE, AND TOOLS FOR FORMING A PRE-SHAPED ALLOGRAFT IMPLANT FOR RECONSTRUCTIVE SURGICAL USE
There is disclosed an acellular dermal matrix (ADM) graft stored as a packaged ADM graft pocket product prepared by a process that includes providing a portion of ADM tissue having a thickness between 1 mm and 2 mm. The process includes scoring the portion of the ADM tissue into a pre-defined shape to form the domed shape ADM graft. The process includes verifying the thickness of the domed shape ADM graft; shaping the domed shape ADM graft to form an ADM graft pocket configured to receive a breast implant. The process includes packaging the ADM graft pocket to form a packaged ADM graft pocket. The process includes irradiating the packaged ADM graft pocket to a sterility assurance level of a desired level to form the packaged ADM graft pocket product. Other embodiments are also disclosed.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
B65B 55/02 - Sterilising, e.g. of complete packages
14.
PRE-SHAPED ALLOGRAFT IMPLANT FOR RECONSTRUCTIVE SURGICAL USE AND METHODS OF MANUFACTURE AND USE, AND TOOLS FOR FORMING A PRE-SHAPED ALLOGRAFT IMPLANT FOR RECONSTRUCTIVE SURGICAL USE
There is disclosed a tool having a set of features for forming a domed acellular dermal matrix (ADM) graft. An acellular dermal matrix (ADM) graft product includes an ADM graft derived from full-thickness skin, with a pre-formed domed shape having a mesh pattern formed therein. In an embodiment, the set of features include a shaping tool feature and a scoring tool feature. The shaping tool feature has a shaping portion configured to shape a dome shaped ADM graft. The scoring tool feature has a scoring portion configured to impart a desired mesh pattern into the domed shaped ADM graft. Other embodiments are also disclosed.
A61L 27/36 - Materials for prostheses or for coating prostheses containing ingredients of undetermined constitution or reaction products thereof
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
The disclosure provides bone graft materials, methods for their use and manufacture. Exemplary bone graft materials comprise combining a radiopaque component with a cancellous bone component to produce a bone graft material, wherein the cancellous bone component comprises native osteoreparative cells. Methods for treating a subject with the bone graft material are also provided.
There is disclosed a tool having a set of features for forming a domed acellular dermal matrix (ADM) graft. An acellular dermal matrix (ADM) graft product includes an ADM graft derived from full-thickness skin, with a pre-formed domed shape having a mesh pattern formed therein. In an embodiment, the set of features include a shaping tool feature and a scoring tool feature. The shaping tool feature has a shaping portion configured to shape a dome shaped ADM graft. The scoring tool feature has a scoring portion configured to impart a desired mesh pattern into the domed shaped ADM graft. Other embodiments are also disclosed.
Provided are enriched tissue extracts and methods of making and using such extracts. The enriched tissue extracts contain biologically active components. Some extracts produced by the methods contain extracellular vesicles. The methods can involve administering a physical stress on a biological sample comprising live cells or otherwise stimulating the live cells of the biological sample. Also contemplated are methods in which the biological sample does not contain live cells. The biological sample is incubated in an extraction solution for a period of time sufficient for extraction of biologically active components from the biological sample. Methods of using the extracts, or extracellular vesicles isolated therefrom, therapeutically and for in vitro purposes are also provided.
A pre-sutured allograft construct and method of manufacture for repairing, replacing, reconstructing, or augmenting a hip or shoulder labrum may include a folded tissue portion extending from a first end to a second end and forming top, middle, and bottom folds. A stitched pattern secures the folded tissue portion into a graft roll having an overall length extending from a first adjustable region, through a central region, and through a second adjustable region. A continuous series of whip stitches extends from the first adjustable region, through the central region, and through the second adjustable region. A series of triple circumferential stitches overlays the whip stitches in the first and the second adjustable regions, while a series of circumferential stitches alternates with the whip stitches in the central region. The construct is pre-manufactured as an allograft product, but is adjustable during the surgical procedure within the body. Other embodiments are also disclosed.
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
A pre-sutured allograft construct and method of manufacture for repairing, replacing, reconstructing, or augmenting a hip or shoulder labrum may include a folded tissue portion extending from a first end to a second end and forming top, middle, and bottom folds. A stitched pattern secures the folded tissue portion into a graft roll having an overall length extending from a first adjustable region, through a central region, and through a second adjustable region. A continuous series of whip stitches extends from the first adjustable region, through the central region, and through the second adjustable region. A series of triple circumferential stitches overlays the whip stitches in the first and the second adjustable regions, while a series of circumferential stitches alternates with the whip stitches in the central region. The construct is pre-manufactured as an allograft product, but is adjustable during the surgical procedure within the body. Other embodiments are also disclosed.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
A pre-sutured allograft construct and method of manufacture for repairing, replacing, reconstructing, or augmenting a hip or shoulder labrum may include a folded tissue portion extending from a first end to a second end and forming top, middle, and bottom folds. A stitched pattern secures the folded tissue portion into a graft roll having an overall length extending from a first adjustable region, through a central region, and through a second adjustable region. A continuous series of whip stitches extends from the first adjustable region, through the central region, and through the second adjustable region. A series of triple circumferential stitches overlays the whip stitches in the first and the second adjustable regions, while a series of circumferential stitches alternates with the whip stitches in the central region. The construct is pre-manufactured as an allograft product, but is adjustable during the surgical procedure within the body. Other embodiments are also disclosed.
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
A pre-sutured allograft construct and method of manufacture for repairing, replacing, reconstructing, or augmenting a hip or shoulder labrum may include a folded tissue portion extending from a first end to a second end and forming top, middle, and bottom folds. A stitched pattern secures the folded tissue portion into a graft roll having an overall length extending from a first adjustable region, through a central region, and through a second adjustable region. A continuous series of whip stitches extends from the first adjustable region, through the central region, and through the second adjustable region. A series of triple circumferential stitches overlays the whip stitches in the first and the second adjustable regions, while a series of circumferential stitches alternates with the whip stitches in the central region. The construct is pre-manufactured as an allograft product, but is adjustable during the surgical procedure within the body. Other embodiments are also disclosed.
Provided are systems and methods for treating or processing tissue, and tissue products made using such systems and methods. The methods involve combining tissue with a processing solution in a processing vessel and applying resonant acoustic energy thereto. In some instances, the tissue is processed in the absence of processing solution. The resonant acoustic energy rapidly agitates the tissue with the processing solution by vibration. The general method provided is broadly applicable to a variety of tissue processing methods, the processing solution and features of the resonant acoustic energy being selected based on the type of tissue to be processed and the nature of the processing to be performed. Exemplary methods include methods of bone demineralization, tissue decellularization, tissue cryopreservation, production of stromal vascular fraction, tissue homogenization, tissue cleansing, and tissue decontamination, and assessment of microbial load. By applying resonant acoustic energy to the tissue during processing, the rate or efficiency of processing, or both, may be improved.
40 - Treatment of materials; recycling, air and water treatment,
44 - Medical, veterinary, hygienic and cosmetic services; agriculture, horticulture and forestry services
Goods & Services
Cryopreservation of human allograft tissue; cryopreservation of allograft bone and tissue; cryopreservation of cartilage; cryopreservation of medical implants, namely, bone and cartilage implants made of biological materials; cryopreservation of human allograft cartilage; cryopreservation of cellular tissue and cellular components in the nature of biological tissue for implantation within cartilage for the repair, replacement and growth enhancement of cartilage Processing of human allograft tissue; processing of allograft bone and tissue; processing of cartilage
Compositions comprising a cartilage sheet comprising a plurality of interconnected cartilage tiles and a biocompatible carrier are provided. Methods of manufacturing cartilage compositions comprising a cartilage sheet comprising a plurality of interconnected cartilage tiles are also provided.
The disclosure provides bone graft materials, methods for their use and manufacture. Exemplary bone graft materials comprise combining a radiopaque component with a cancellous bone component to produce a bone graft material, wherein the cancellous bone component comprises native osteoreparative cells. Methods for treating a subject with the bone graft material are also provided.
An acellular dermal matrix (ADM) graft product includes an ADM graft derived from full-thickness skin, with a pre-formed shape having a mesh pattern formed therein. The ADM graft is disposed in a sterilization package and irradiated to provide a two year shelf-life for the ADM graft product, which is used in the time-saving, efficient, and effective surgical reconstruction of soft tissue defects. One manufacturing method involves providing a portion of full-thickness donor-derived skin, removing an epidermis and a fat layer form the portion of the skin, decellularizing the portion of the skin to form a portion of ADM graft material, pre-shaping and meshing the ADM graft material, verifying a thickness of the ADM graft material, and packaging the pre-shaped, meshed ADM graft material in a sterilizable package and irradiating for a two-year shelf-life to form the ADM graft product. Other embodiments are also disclosed.
An acellular dermal matrix (ADM) graft product includes an ADM graft derived from full-thickness skin, with a pre-formed shape having a mesh pattern formed therein. The ADM graft is disposed in a sterilization package and irradiated to provide a two year shelf-life for the ADM graft product, which is used in the time-saving, efficient, and effective surgical reconstruction of soft tissue defects. One manufacturing method involves providing a portion of full-thickness donor-derived skin, removing an epidermis and a fat layer form the portion of the skin, decellularizing the portion of the skin to form a portion of ADM graft material, pre-shaping and meshing the ADM graft material, verifying a thickness of the ADM graft material, and packaging the pre-shaped, meshed ADM graft material in a sterilizable package and irradiating for a two-year shelf-life to form the ADM graft product. Other embodiments are also disclosed.
An acellular dermal matrix (ADM) graft product includes an ADM graft derived from full-thickness skin, with a pre-formed shape having a mesh pattern formed therein. The ADM graft is disposed in a sterilization package and irradiated to provide a two year shelf-life for the ADM graft product, which is used in the time-saving, efficient, and effective surgical reconstruction of soft tissue defects. One manufacturing method involves providing a portion of full-thickness donor-derived skin, removing an epidermis and a fat layer form the portion of the skin, decellularizing the portion of the skin to form a portion of ADM graft material, pre-shaping and meshing the ADM graft material, verifying a thickness of the ADM graft material, and packaging the pre-shaped, meshed ADM graft material in a sterilizable package and irradiating for a two-year shelf-life to form the ADM graft product. Other embodiments are also disclosed.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/36 - Materials for prostheses or for coating prostheses containing ingredients of undetermined constitution or reaction products thereof
There is disclosed a system and methods for debriding soft tissue from bone using a high-pressure water debridement system. One embodiment includes a cylindrical sleeve bounded by endcaps and having a drainage port positioned for effluent drainage. A central shaft is configured to receive a bone segment and is disposed along a longitudinal center of the sleeve and rotatively coupled between the endcaps. At least one high-pressure water nozzle is disposed on each side of the sleeve, each of which is positioned to impact the bone segment with a high-pressure water stream. A rotational actuator is configured to rotate the central shaft and the bone segment relative to the sleeve and the water nozzles such that when the high-pressure water nozzles are operational, the high-pressure water streams debride the bone segment. Other embodiments are also disclosed.
The present invention provides compositions for treating soft tissue injuries comprising a collagen matrix and mesenchymal stem cells adhered to the collagen matrix. Methods of making and using compositions comprising a collagen matrix and mesenchymal stem cells adhered to the collagen matrix are also provided.
Periosteum harvesting and processing systems and methods enable rapid, efficient, and repeatable harvesting of periosteum tissue from human long bones and processing of the tissue into individual fibers for use in strengthening surgical allograft products. One harvesting and processing method involves providing a human long bone, securing the long bone between two rotating live centers, scraping, using one of a plurality of harvesting tools selected from a harvesting and processing kit, periosteum tissue from the long bone, executing a first wash cycle comprising a hydrogen peroxide wash, executing a second wash cycle comprising an isopropyl alcohol wash, executing a third wash cycle comprising a phosphate buffered saline wash, compressing the periosteum tissue to remove excess fluid, cryofracturing the tissue until a desired fiber size is achieved, and separating the periosteum tissue into individual periosteum fibers having the desired fiber size. Other embodiments are also disclosed.
Compositions comprising a cartilage sheet comprising a plurality of interconnected cartilage tiles and a biocompatible carrier are provided. Methods of manufacturing cartilage compositions comprising a cartilage sheet comprising a plurality of interconnected cartilage tiles are also provided.
There is disclosed a system and method for dispersing sterile water from a circulating high-purity water system to a processing field containing allograft tissue. One embodiment includes a fluid inlet that is fluidly coupled with and configured to receive sterile water from the water system. The dispersion system also includes at least first and second fluid outlets that are selectively operable to deliver respective first and second fluid streams into different areas of the processing field. At least one of the first and second fluid outlets may be associated with a regulator valve configured to provide an adjustable flowrate to conserve water pulled from the circulating water system to meet the needs of the application taking place within the processing field. Other embodiments are also disclosed.
There is disclosed a system and method for dispersing sterile water from a circulating high-purity water system to a processing field containing allograft tissue. One embodiment includes a fluid inlet that is fluidly coupled with and configured to receive sterile water from the water system. The dispersion system also includes at least first and second fluid outlets that are selectively operable to deliver respective first and second fluid streams into different areas of the processing field. At least one of the first and second fluid outlets may be associated with a regulator valve configured to provide an adjustable flowrate to conserve water pulled from the circulating water system to meet the needs of the application taking place within the processing field. Other embodiments are also disclosed.
Systems and methods for the automated demineralization of bone and decellularization of soft tissue include a mixing assembly communicatively coupled with a control and reporting system. The mixing assembly includes a housing that supports a cannister sub-assembly forming a mixing chamber having a reagent inlet, a reagent outlet, and an internal fluid agitator. A motor is operably coupled with the agitator and configured to spin the agitator in first and second directions relative to the cannister, thereby agitating fluid contained within the mixing chamber. At least one pump is configured to progressively inject measured quantities of a plurality of reagents into the mixing chamber. The associated control and reporting system includes a user terminal that displays a graphical user interface enabling a user to initiate an automated demineralization or decellularization procedure in which the mixing assembly demineralizes tissue placed within the mixing chamber. Other embodiments are also disclosed.
B01F 27/808 - Mixers with rotary stirring devices in fixed receptaclesKneaders with stirrers rotating about a substantially vertical axis with stirrers driven from the bottom of the receptacle
A61L 27/36 - Materials for prostheses or for coating prostheses containing ingredients of undetermined constitution or reaction products thereof
B01F 27/115 - Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
An extraction system for testing microbial contamination includes a biocompatible outer vessel that has a side wall and a biocompatible suspension system that is positionable within an interior of the biocompatible outer vessel. The biocompatible suspension system includes a horizontal member on which a sample may be supported and a securement mechanism that is engagable with the side wall of the biocompatible outer vessel to maintain the suspension system at a desired position within the biocompatible outer vessel.
B01J 19/10 - Processes employing the direct application of electric or wave energy, or particle radiationApparatus therefor employing sonic or ultrasonic vibrations
C12Q 1/00 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions
G01N 1/08 - Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit
44.
CRYOPRESERVATION OF CARTILAGE AND OSTEOCHONDRAL TISSUE
Provided are systems and methods for cryopreserving tissue, particularly cartilage tissue and osteochondral tissue. Also provided are tissue products made using such systems and methods. Certain methods involve combining tissue with a cryopreservation solution in a processing vessel and applying resonant acoustic energy thereto prior to freezing the tissue. The resonant acoustic energy rapidly agitates the tissue with the cryopreservation solution by vibration. By applying resonant acoustic energy to the tissue during processing, the rate or efficiency of processing, or both, may be improved. Certain methods involve soaking tissue in a cryopreservation solution prior to freezing the tissue.
There is disclosed a customizable system and methods of use for manufacturing and testing a variety of pre-sutured allograft tendon constructs sutured according to a variety of stitching patterns and featuring a variety of tissue lengths and types. One embodiment includes a triple-channel base having first, second, and third longitudinal channels extending between first and second ends of the base, as well as a plurality of tendon-manipulation accessories. Each of the tendon-manipulation accessories includes a locking-base assembly for selectively securing the accessory to the base such that the multiple tendon-manipulation accessories may be secured to the triple-channel base in a variety of custom arrangements suitable for preparing the variety of pre-sutured constructs and/or for pre-tensioning or testing the variety of the pre-sutured constructs. Other embodiments are also disclosed.
G01L 5/00 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
A61F 2/46 - Special tools for implanting artificial joints
G01L 5/06 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using mechanical means
G01L 1/04 - Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
The disclosure provides bone graft materials, methods for their use and manufacture. Exemplary bone graft materials comprise combining a radiopaque component with a cancellous bone component to produce a bone graft material, wherein the cancellous bone component comprises native osteoreparative cells. Methods for treating a subject with the bone graft material are also provided.
There are disclosed systems and methods for safely and effectively removing the articular cartilage and cortical bone layers from an articular surface of a human cadaveric femoral head. One embodiment includes an osseous-sanding accessory system installed upon a conventional band saw having a motor and a cabinet that houses a pulley coupled with a primary drive shaft rotated by the motor. The accessory system may include a threaded drive shaft coupled with the primary drive shaft, a grinding disk having an abrasive surface and affixed about a distal end of the threaded drive shaft, and a removable accessory table mounted to the band saw below the grinding disk. When the motor rotates the primary drive shaft, and thus the threaded drive shaft, the grinding disk rotates relative to the accessory table and abrades osseous tissues introduced to the abrasive surface of the grinding disk. Other embodiments are also disclosed.
B23D 45/06 - Sawing machines or sawing devices with circular saw blades or with friction saw discs with a circular saw blade arranged underneath a stationary work-table
There is disclosed a system and method for laser cutting of human allograft tissue. One embodiment includes a laser canister having a housing fabricated with a sterilizable material. The housing defines an interior portion, an exterior portion, and a selectively operable opening into the interior portion. The selectively operable opening includes a hermetic seal to maintain a sterile environment from the exterior portion when the selectively operable opening is closed. The canister includes an infrared (IR) transmissive optical window disposed in the housing and configured to allow a laser beam to penetrate therethrough to the interior portion. The canister also includes an insert within the interior portion configured to support human allograft tissue in a sterile environment, the insert being removable from the housing to move the human allograft tissue into another sterile environment after the housing has been exposed to a non-sterile environment. Other embodiments are also disclosed.
G01N 1/10 - Devices for withdrawing samples in the liquid or fluent state
B23K 26/12 - Working by laser beam, e.g. welding, cutting or boring in a special environment or atmosphere, e.g. in an enclosure
B23K 26/38 - Removing material by boring or cutting
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
There is disclosed a system and methods for safely, precisely, and efficiently cutting cadaveric bone segments into a number of dimensionally standardized pieces. One embodiment provides a jig system for use with a band saw. The jig system may include a v-shaped trough riding upon a plate and at least one rail designed to glide within a corresponding groove formed in the band saw table and stretching parallel to the blade. The trough may include a channel having a series of incremental stops extending between its proximal and distal ends. A bone-advancement wedge may be advanced proximally along the channel between the incremental stops to advance at least one bone segment within the trough toward the proximal end of the trough such that, by sliding the rail(s) within the table groove(s), a desired incremental portion of the bone segment is introduced to the blade. Other embodiments are also disclosed.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61F 2/46 - Special tools for implanting artificial joints
A61B 17/00 - Surgical instruments, devices or methods
B26D 7/06 - Arrangements for feeding or delivering work of other than sheet, web, or filamentary form
B27B 25/10 - Manually-operated feeding or pressing accessories, e.g. pushers
B28D 1/10 - Working stone or stone-like materials, e.g. brick, concrete, not provided for elsewhereMachines, devices, tools therefor by sawing with provision for measuring
50.
Fascia fibrous compositions and methods for their use and manufacture
Embodiments of the present technology may permit for native, intact, natural, human-derived, or allograft-derived fibers to be used as threads for suturing. Embodiments may include a thread for suturing. The thread may include a first portion, which includes a fascia fiber. The first portion may have a first end that includes the fascia fiber. The thread may also include a second portion including a non-human-derived fiber. The second portion may have a first end that includes the non-human-derived fiber. The first end of the second portion may be attached to the first end of the first portion. Embodiments may include a method of forming a thread. The method may include attaching a first end of a fascia fiber to a first end of a first non-human-derived fiber. The method may also include attaching a second end of the fascia fiber to a first end of a second non-human-derived fiber.
There is disclosed a system and methods for debriding soft tissue from bone using a high-pressure water debridement system. One embodiment includes a cylindrical sleeve bounded by endcaps and having a drainage port positioned for effluent drainage. A central shaft is configured to receive a bone segment and is disposed along a longitudinal center of the sleeve and rotatively coupled between the endcaps. At least one high-pressure water nozzle is disposed on each side of the sleeve, each of which is positioned to impact the bone segment with a high-pressure water stream. A rotational actuator is configured to rotate the central shaft and the bone segment relative to the sleeve and the water nozzles such that when the high-pressure water nozzles are operational, the high-pressure water streams debride the bone segment. Other embodiments are also disclosed.
Embodiments of the present invention provides bone graft compositions, and methods for their use and manufacture. A bone graft composition may include a first amount of demineralized cortical bone that includes non-spherical particles. The composition may further include a second amount of demineralized cancellous bone. The composition may also include a third amount of non-demineralized cortical bone. The demineralized cortical bone, the demineralized cancellous bone, and the non-demineralized cortical bone may be obtained from the same cadaveric donor.
Compositions comprising a cartilage sheet comprising a plurality of interconnected cartilage tiles and a biocompatible carrier are provided. Methods of manufacturing cartilage compositions comprising a cartilage sheet comprising a plurality of interconnected cartilage tiles are also provided.
Embodiments of the present invention may include a method for improving handling characteristics of a soft tissue, such as an amnion or muscle tissue. The method may include providing the amnion tissue from a human donor. Furthermore, the method may include exposing the amnion tissue to supercritical carbon dioxide to form an exposed amnion tissue. The exposed amnion tissue may have a higher ultimate tensile strength and elastic modulus than the amnion tissue before the exposure.
Embodiments of this technology may include an apparatus for drying tissue. The apparatus may include human donor tissue placed in contact with and between at least two layers of backing material. This tissue and backing layer may then be restrained by two plates. This tissue may be amniotic tissue. The backing layer may include woven or nonwoven material. This backing layer may be wetted with a saline solution. At least one of the plates of the tissue drying apparatus may be perforated. The tissue assembly along with the plates may then be placed inside a chamber configured to receive the plates and tissue assembly. The chamber may be configured so that gas can be forced into the chamber with the gas flow going around the plates and the tissue assembly.
Embodiments of the present technology include a method of making a bone composite graft for administration to a patient. The method may include combining a human cadaveric bone material with a plurality of polymethyl methacrylate binder particles and spincasting the combined human cadaveric bone material and polymethyl methacrylate binder particles to produce the bone composite graft. The method may also include ablating the bone composite graft to increase the surface area of bone material exposed. The human cadaveric bone material may be immobilized in the plurality of polymethyl methacrylate binder particles. The human cadaveric bone material may be present in an amount that is 50 weight percent of the bone composite graft, or less. Additionally, the bone composite graft may have a yield strength that is at least 13,000 N/cm2 and no greater than 15,000 N/cm2.
A61L 27/44 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
A61L 27/48 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
42 - Scientific, technological and industrial services, research and design
Goods & Services
Providing on-line non-downloadable software for maintaining, monitoring, retrieving, and paperless delivery of, donor information in the field of cadaveric bones and tissue
There is disclosed an apparatus and method of manufacture relating to a pre-sutured, high-strength allograft tendon construct. One embodiment of the allograft tendon construct includes first and second tendon lengths that are positioned longitudinally in parallel to one another. A whip stitched pattern secures the first and second tendon lengths at a free end, forming a stitched end portion that abuts an unstitched middle portion. The whip stitched pattern includes a plurality of sutures that originate adjacent to the free end and progress or advance inward toward the unstitched middle portion. A multiple knot bundle is applied immediately prior to a final suture, such that the final suture loops about the multiple knot bundle and locks the multiple knot bundle in place beneath the final suture. Other embodiments are also disclosed.
There is disclosed an apparatus and method of manufacture relating to a pre-sutured, high-strength allograft tendon construct. One embodiment of the allograft tendon construct includes first and second tendon lengths that are positioned longitudinally in parallel to one another. A whip stitched pattern secures the first and second tendon lengths at a free end, forming a stitched end portion that abuts an unstitched middle portion. The whip stitched pattern includes a plurality of sutures that originate adjacent to the free end and progress or advance inward toward the unstitched middle portion. A multiple knot bundle is applied immediately prior to a final suture, such that the final suture loops about the multiple knot bundle and locks the multiple knot bundle in place beneath the final suture. Other embodiments are also disclosed.
Provided in this disclosure are various composite grafts having a trabecular synthetic scaffold with voids defined in at least a portion of the scaffold and a biological component positioned in at least some of the voids of the scaffold. The grafts may be osteogenic, chondrogenic, osteochondrogenic, or vulnerary in nature. Also provided are methods of using the composite grafts to treat a tissue defect in a subject. Methods of manufacturing are also provided. Grafts are manufactured by additive manufacturing. Agitation may be used to combine composite grafts with additional biological component.
B06B 1/04 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with electromagnetism
B29C 67/00 - Shaping techniques not covered by groups , or
B33Y 80/00 - Products made by additive manufacturing
B33Y 70/00 - Materials specially adapted for additive manufacturing
Provided in this disclosure are various composite grafts having a trabecular scaffold with voids defined in at least a portion of the scaffold and a biological component positioned in at least some of the voids of the scaffold. The grafts may have a synthetic scaffold or a bone substrate scaffold. The grafts may be osteogenic, chondrogenic, osteochondrogenic, or vulnerary in nature. Also provided are methods of using the composite grafts to treat a tissue defect in a subject. Methods of manufacturing are also provided. Synthetic scaffolds are manufactured by additive manufacturing. Agitation is used to combine the biological component with the scaffold of the graft.
B06B 1/04 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with electromagnetism
B29C 67/00 - Shaping techniques not covered by groups , or
B33Y 80/00 - Products made by additive manufacturing
B33Y 70/00 - Materials specially adapted for additive manufacturing
There is disclosed a system and method for dispersing sterile water from a circulating high-purity water system to a processing field containing allograft tissue. One embodiment includes a fluid inlet that is fluidly coupled with and configured to receive sterile water from the water system. The dispersion system also includes at least first and second fluid outlets that are selectively operable to deliver respective first and second fluid streams into different areas of the processing field. At least one of the first and second fluid outlets may be associated with a regulator valve configured to provide an adjustable flowrate to conserve water pulled from the circulating water system to meet the needs of the application taking place within the processing field. Other embodiments are also disclosed.
Provided are systems and methods for treating or processing tissue, and tissue products made using such systems and methods. The methods involve combining tissue with a processing solution in a processing vessel and applying resonant acoustic energy thereto. In some instances, the tissue is processed in the absence of processing solution. The resonant acoustic energy rapidly agitates the tissue with the processing solution by vibration. The general method provided is broadly applicable to a variety of tissue processing methods, the processing solution and features of the resonant acoustic energy being selected based on the type of tissue to be processed and the nature of the processing to be performed. Exemplary methods include methods of bone demineralization, tissue decellularization, tissue cryopreservation, production of stromal vascular fraction, tissue homogenization, tissue cleansing, and tissue decontamination, and assessment of microbial load. By applying resonant acoustic energy to the tissue during processing, the rate or efficiency of processing, or both, may be improved.
Provided are systems and methods for treating or processing tissue, and tissue products made using such systems and methods. The methods involve combining tissue with a processing solution in a processing vessel and applying resonant acoustic energy thereto. In some instances, the tissue is processed in the absence of processing solution. The resonant acoustic energy rapidly agitates the tissue with the processing solution by vibration. The general method provided is broadly applicable to a variety of tissue processing methods, the processing solution and features of the resonant acoustic energy being selected based on the type of tissue to be processed and the nature of the processing to be performed. Exemplary methods include methods of bone demineralization, tissue decellularization, tissue cryopreservation, production of stromal vascular fraction, tissue homogenization, tissue cleansing, and tissue decontamination, and assessment of microbial load. By applying resonant acoustic energy to the tissue during processing, the rate or efficiency of processing, or both, may be improved.
Provided are systems and methods for treating or processing tissue, and tissue products made using such systems and methods. The methods involve combining tissue with a processing solution in a processing vessel and applying resonant acoustic energy thereto. In some instances, the tissue is processed in the absence of processing solution. The resonant acoustic energy rapidly agitates the tissue with the processing solution by vibration. The general method provided is broadly applicable to a variety of tissue processing methods, the processing solution and features of the resonant acoustic energy being selected based on the type of tissue to be processed and the nature of the processing to be performed. Exemplary methods include methods of bone demineralization, tissue decellularization, tissue cryopreservation, production of stromal vascular fraction, tissue homogenization, tissue cleansing, and tissue decontamination, and assessment of microbial load. By applying resonant acoustic energy to the tissue during processing, the rate or efficiency of processing, or both, may be improved.
There is disclosed an apparatus and method of manufacture relating to a pre-sutured, high-strength allograft tendon construct. One embodiment of the allograft tendon construct includes first and second tendon lengths that are positioned longitudinally in parallel to one another. A whip stitched pattern secures the first and second tendon lengths at a free end, forming a stitched end portion that abuts an unstitched middle portion. The whip stitched pattern includes a plurality of sutures that originate adjacent to the free end and progress or advance inward toward the unstitched middle portion. A multiple knot bundle is applied immediately prior to a final suture, such that the final suture loops about the multiple knot bundle and locks the multiple knot bundle in place beneath the final suture. Other embodiments are also disclosed.
The present invention provides compositions for treating soft tissue injuries comprising a collagen matrix and mesenchymal stem cells adhered to the collagen matrix. Methods of making and using compositions comprising a collagen matrix and mesenchymal stem cells adhered to the collagen matrix are also provided.
The disclosure provides apparatus and methods of use pertaining to a measurement template for use in allograft preparation and processing. Specifically, the template may be used to measure the trochlea angle of the trochlea groove of the distal human femur. The measurement template may be formed of a flat metal plate having first and second ends, each forming a different angle designed to fit against the trochlea groove and provide an indication of the angle of the groove in relation to the angles formed by the template. The trochlea angle of the allograft may then be documented, allowing for proper matching between allograft tissue and transplant recipient physiology. The measurement template may be adapted for a variety of configurations depending on desired and/or common allograft requirements. Other embodiments are also disclosed.
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
A61B 5/107 - Measuring physical dimensions, e.g. size of the entire body or parts thereof
A61F 2/46 - Special tools for implanting artificial joints
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
There is disclosed a system and method for laser cutting of human allograft tissue. One embodiment includes a laser canister having a housing fabricated with a sterilizable material. The housing defines an interior portion, an exterior portion, and a selectively operable opening into the interior portion. The selectively operable opening includes a hermetic seal to maintain a sterile environment from the exterior portion when the selectively operable opening is closed. The canister includes an infrared (IR) transmissive optical window disposed in the housing and configured to allow a laser beam to penetrate therethrough to the interior portion. The canister also includes an insert within the interior portion configured to support human allograft tissue in a sterile environment, the insert being removable from the housing to move the human allograft tissue into another sterile environment after the housing has been exposed to a non-sterile environment. Other embodiments are also disclosed.
There is disclosed a system and method for measuring the diameter or thickness of a tendon. In an embodiment, the device includes an adjustable tube having a variably sized cross-sectional diameter in a direction perpendicular to an axis extending between the first end and the second end, the adjustable tube being positionable from an open configuration in which the variably sized cross-sectional diameter is larger than a diameter of a tendon so as to allow loading of the tendon, to a closed configuration in which the variably sized cross-sectional diameter approximates the diameter of the tendon so as to allow measurement of the tendon. The device includes a measurement gradient in operable configuration with the adjustable tube so as to allow measurement of the tendon in the closed configuration. Other embodiments are also disclosed.
A61B 5/107 - Measuring physical dimensions, e.g. size of the entire body or parts thereof
G01B 5/08 - Measuring arrangements characterised by the use of mechanical techniques for measuring diameters
A61B 19/00 - Instruments, implements or accessories for surgery or diagnosis not covered by any of the groups A61B 1/00-A61B 18/00, e.g. for stereotaxis, sterile operation, luxation treatment, wound edge protectors(protective face masks A41D 13/11; surgeons' or patients' gowns or dresses A41D 13/12; devices for carrying-off, for treatment of, or for carrying-over, body liquids A61M 1/00)
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
There is disclosed a system and method for laser cutting of human allograft tissue. One embodiment includes a laser canister having a housing fabricated with a sterilizable material. The housing defines an interior portion, an exterior portion, and a selectively operable opening into the interior portion. The selectively operable opening includes a hermetic seal to maintain a sterile environment from the exterior portion when the selectively operable opening is closed. The canister includes an infrared (IR) transmissive optical window disposed in the housing and configured to allow a laser beam to penetrate therethrough to the interior portion. The canister also includes an insert within the interior portion configured to support human allograft tissue in a sterile environment, the insert being removable from the housing to move the human allograft tissue into another sterile environment after the housing has been exposed to a non-sterile environment. Other embodiments are also disclosed.
A61B 18/20 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
72.
Consistent calcium content bone allograft systems and methods
Embodiments of the present invention provides bone graft compositions, and methods for their use and manufacture. A bone graft composition may include a first amount of non-demineralized cancellous bone. The composition may further include a second amount of demineralized cancellous bone. The composition may also include a third amount of demineralized cortical bone. The non-demineralized cancellous bone, the demineralized cancellous bone, and the demineralized cortical bone may be obtained from the same cadaveric donor.
Composite grafts including a biocompatible, synthetic scaffold; and a biological tissue component obtained or derived from a deceased donor tissue, wherein the biological tissue component is embedded in the biocompatible, synthetic scaffold, are provided as systems relating thereto. Methods of manufacture and methods of treatment using such grafts are also provided.
There is disclosed a system for cleaning and disinfecting allograft material. In an embodiment, the system includes a sterile bag and a motorized paddle blender. The sterile bag having an outer wall configured to withstand blending forces, at least one paddle contact section, and a free-floating mesh bag configured to retain the allograft material. The motorized paddle blender having at least one paddle configured to apply blending forces on the sterile bag on the at least one paddle contact area, a motorized portion to actuate the at least one paddle, and a door component configured to hold the sterile bag adjacent the at least one paddle. The at least one paddle and the allograft retaining section are configured to prevent the paddle from contacting the allograft material when the blending forces are applied on the sterile bag on the at least one paddle contact area.
B08B 3/04 - Cleaning involving contact with liquid
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
A61L 2/00 - Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lensesAccessories therefor
B08B 3/10 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
A61L 9/00 - Disinfection, sterilisation or deodorisation of air
75.
Systems and methods for cleaning and disinfecting allograft material
There is disclosed a system for cleaning and disinfecting allograft material. In an embodiment, the system includes a sterile bag and a motorized paddle blender. The sterile bag having an outer wall configured to withstand blending forces, at least one paddle contact section, and an allograft retaining section separate from the at least one paddle contact section. The motorized paddle blender having at least one paddle configured to apply blending forces on the sterile bag on the at least one paddle contact area, a motorized portion to actuate the at least one paddle, and a door component configured to hold the sterile bag adjacent the at least one paddle. The at least one paddle and the allograft retaining section are configured to prevent the paddle from contacting the allograft material when the blending forces are applied on the sterile bag on the at least one paddle contact area.
A61L 2/00 - Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lensesAccessories therefor
A61F 2/46 - Special tools for implanting artificial joints
B08B 3/10 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
B01F 11/00 - Mixers with shaking, oscillating, or vibrating mechanisms
A61B 50/30 - Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
76.
Allografts combined with tissue derived stem cells for bone healing
There is disclosed a method of combining mesenchymal stem cells (MSCs) with a bone substrate. In an embodiment, the method includes obtaining tissue having MSCs together with unwanted cells. The tissue is digested to form a cell suspension having MSCs and unwanted cells. The cell suspension is added to the substrate. The substrate is cultured to allow the MSCs to adhere. The substrate is rinsed to remove unwanted cells. In various embodiments, the tissue is adipose tissue, muscle tissue, or bone marrow tissue. In an embodiment, there is disclosed an allograft product including a combination of MSCs with a bone substrate in which the combination is manufactured by culturing MSCs disposed on the substrate for a period of time to allow the MSCs to adhere to the substrate, and then rinsing the substrate to remove unwanted cells from the substrate. Other embodiments are also disclosed.
Compositions comprising a cartilage sheet comprising a plurality of interconnected cartilage tiles and a biocompatible carrier are provided. Methods of manufacturing cartilage compositions comprising a cartilage sheet comprising a plurality of interconnected cartilage tiles are also provided.
There is disclosed a method of combining mesenchymal stem cells (MSCs) with a bone substrate. In an embodiment, the method includes obtaining tissue having MSCs together with unwanted cells. The tissue is digested to form a cell suspension having MSCs and unwanted cells. The cell suspension is added to the substrate. The substrate is cultured to allow the MSCs to adhere. The substrate is rinsed to remove unwanted cells. In various embodiments, the tissue is adipose tissue, muscle tissue, or bone marrow tissue. In an embodiment, there is disclosed an allograft product including a combination of MSCs with a bone substrate in which the combination is manufactured by culturing MSCs disposed on the substrate for a period of time to allow the MSCs to adhere to the substrate, and then rinsing the substrate to remove unwanted cells from the substrate. Other embodiments are also disclosed.
Osteochondral graft composition that include a cartilage component and a bone component, and which include one or more perforations in the bone component and/or the cartilage component, are provided. Methods of manufacturing and using such osteochondral graft compositions are also provided.
Embodiments of the present invention may include a method for improving handling characteristics of an amnion tissue. The method may include providing the amnion tissue from a human donor. Furthermore, the method may include exposing the amnion tissue to supercritical carbon dioxide to form an exposed amnion tissue. The exposed amnion tissue may have a higher ultimate tensile strength and elastic modulus than the amnion tissue before the exposure.
Flowable matrix compositions and methods of their use and manufacture are provided. Exemplary compositions may include a flowable, syringeable, putty-like form of acellular human dermal matrix. In some cases, compositions may include a moldable acellular collagen extracellular matrix. In use, the matrix compositions can be used to fill or treat skin voids, channel wounds, and other soft tissue deficiencies.
Flowable matrix compositions and methods of their use and manufacture are provided. Exemplary compositions may include a flowable, syringeable, putty-like form of acellular human dermal matrix. In some cases, compositions may include a moldable acellular collagen extracellular matrix. In use, the matrix compositions can be used to fill or treat skin voids, channel wounds, and other soft tissue deficiencies.
Flowable matrix compositions and methods of their use and manufacture are provided. Exemplary compositions may include a flowable, syringeable, putty-like form of acellular human dermal matrix. In some cases, compositions may include a moldable acellular collagen extracellular matrix. In use, the matrix compositions can be used to fill or treat skin voids, channel wounds, and other soft tissue deficiencies.
Embodiments of the present technology include a graft for administration at a treatment site of a patient. The graft may include a human cadaveric bone material bonded together with a polymeric binder. The human cadaveric bone material may include demineralized bone particles. The demineralized bone particles may have an average diameter less than 1.1 mm, less than 750 µm, less than 500 µm, or less than 250 µm. The human cadaveric bone material may include non-demineralized bone, cancellous bone, and/or cortical bone in embodiments. In some embodiments, bone from animals other than humans may be used, and the patient may be an animal other than a human.
Embodiments of the present technology include a graft for administration at a treatment site of a patient. The graft may include a human cadaveric bone material bonded together with a polymeric binder. The human cadaveric bone material may include demineralized bone particles. The demineralized bone particles may have an average diameter less than 1.1 mm, less than 750 μm, less than 500 μm, or less than 250 μm. The human cadaveric bone material may include non-demineralized bone, cancellous bone, and/or cortical bone in embodiments. In some embodiments, bone from animals other than humans may be used, and the patient may be an animal other than a human.
A61L 27/44 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
A61L 27/48 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
Embodiments of the present invention encompass graft assemblies, and methods for their use and manufacture. An exemplary bone graft assembly includes first and second bone pieces having respective mating features which, when combined, define non-uniform press fit. Related embodiments encompass graft assemblies having enclosed or hidden mating features.
Embodiments of the technology may involve a method of processing the human donor tissue for administration to a recipient. This method may include the step of contacting the human donor tissue with a backing layer, where the human donor tissue and the backing layer contain a saline solution. This saline solution may include a solvent and a disassociated salt. The method may further include evaporating a portion of the solvent from a surface of the backing layer. The evaporation of the solvent may move a portion of the disassociated salt from the donor tissue to the backing layer. This process may then result in a tissue that is mostly dry and free of salt crystals.
Embodiments of the technology may involve a method of processing the human donor tissue for administration to a recipient. This method may include the step of contacting the human donor tissue with a backing layer, where the human donor tissue and the backing layer contain a saline solution. This saline solution may include a solvent and a disassociated salt. The method may further include evaporating a portion of the solvent from a surface of the backing layer. The evaporation of the solvent may move a portion of the disassociated salt from the donor tissue to the backing layer. This process may then result in a tissue that is mostly dry and free of salt crystals.
Embodiments of the technology may involve a method of processing the human donor tissue for administration to a recipient. This method may include the step of contacting the human donor tissue with a backing layer, where the human donor tissue and the backing layer contain a saline solution. This saline solution may include a solvent and a disassociated salt. The method may further include evaporating a portion of the solvent from a surface of the backing layer. The evaporation of the solvent may move a portion of the disassociated salt from the donor tissue to the backing layer. This process may then result in a tissue that is mostly dry and free of salt crystals.
A61L 15/40 - Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing ingredients of undetermined constitution or reaction products thereof
C12N 5/073 - Embryonic cells or tissuesFoetal cells or tissues
90.
METHODS OF COMBINING MESENCHYMAL STEM CELLS AND CARTILAGE CONTAINING ALLOGRAFTS, AND PRODUCTS OF COMBINED MESENCHYMAL STEM CELLS AND CARTILAGE CONTAINING ALLOGRAFTS
Methods of combining mesenchymal stem cells (MSCs) with an osteochondral allograft, a cartilage allograft, a morselized cartilage allograft, or a decellularized, morselized cartilage allograft are provided. In some embodiments, the method includes seeding a stromal vascular fraction comprising MSCs and unwanted cells onto the allograft.
Embodiments of the present invention encompass fascia, fat, and dermis fibrous compositions, and methods for their manufacture and use. In a first aspect, embodiments of the present invention encompass methods for obtaining a fascia fiber for use in producing a biotextile. Exemplary methods may include treating a cadaveric fascia tissue with acetone, and obtaining the fascia fibers from the treated fascia tissue. In some cases, methods may include processing the fascia fibers to produce the fibrous fascia biotextile.
A61L 15/40 - Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing ingredients of undetermined constitution or reaction products thereof
A61L 27/36 - Materials for prostheses or for coating prostheses containing ingredients of undetermined constitution or reaction products thereof
A61L 31/00 - Materials for other surgical articles
93.
FASCIA FIBROUS COMPOSITIONS AND METHODS FOR THEIR USE AND MANUFACTURE
Embodiments of the present invention encompass fascia, fat, and dermis fibrous compositions, and methods for their manufacture and use. In a first aspect, embodiments of the present invention encompass methods for obtaining a fascia fiber for use in producing a biotextile. Exemplary methods may include treating a cadaveric fascia tissue with acetone, and obtaining the fascia fibers from the treated fascia tissue. In some cases, methods may include processing the fascia fibers to produce the fibrous fascia biotextile.
A61L 15/40 - Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing ingredients of undetermined constitution or reaction products thereof
A61L 27/36 - Materials for prostheses or for coating prostheses containing ingredients of undetermined constitution or reaction products thereof
C12N 5/077 - Mesenchymal cells, e.g. bone cells, cartilage cells, marrow stromal cells, fat cells or muscle cells
Osteochondral graft composition comprising a cartilage component and a bone component, and further comprising one or more perforations in the bone component and/or the cartilage component, are provided. Methods of manufacturing and using osteochondral graft compositions comprising one or more perforations in the bone component and/or the cartilage component are also provided.
Osteochondral graft composition comprising a cartilage component and a bone component, and further comprising one or more perforations in the bone component and/or the cartilage component, are provided. Methods of manufacturing and using osteochondral graft compositions comprising one or more perforations in the bone component and/or the cartilage component are also provided.
The present invention provides compositions for treating soft tissue injuries comprising a collagen matrix and mesenchymal stem cells adhered to the collagen matrix. Methods of making and using compositions comprising a collagen matrix and mesenchymal stem cells adhered to the collagen matrix are also provided.
The present invention provides compositions for treating soft tissue injuries comprising a collagen matrix and mesenchymal stem cells adhered to the collagen matrix. Methods of making and using compositions comprising a collagen matrix and mesenchymal stem cells adhered to the collagen matrix are also provided.
Embodiments of the present invention encompass fascia, fat, and dermis fibrous compositions, and methods for their manufacture and use. In a first aspect, embodiments of the present invention encompass methods for obtaining a fascia fiber for use in producing a biotextile. Exemplary methods may include treating a cadaveric fascia tissue with acetone, and obtaining the fascia fibers from the treated fascia tissue. In some cases, methods may include processing the fascia fibers to produce the fibrous fascia biotextile.
Osteochondral graft composition comprising a cartilage component and a bone component, and further comprising one or more perforations in the bone component and/or the cartilage component, are provided. Methods of manufacturing and using osteochondral graft compositions comprising one or more perforations in the bone component and/or the cartilage component are also provided.
Embodiments of the present invention provides bone graft compositions, and methods for their use and manufacture. A bone graft composition may include a first amount of non-demineralized cancellous bone. The composition may further include a second amount of demineralized cancellous bone. The composition may also include a third amount of demineralized cortical bone. The non-demineralized cancellous bone, the demineralized cancellous bone, and the demineralized cortical bone may be obtained from the same cadaveric donor.