This disclosure relates to SA alkylation reactor systems. The reactor system involves a closed reactor vessel comprising a shell, a vapor outlet, and an emulsion outlet. The reactor system also involves a distributor located at the lower portion of the reactor vessel, a mixer fluidly connected with the distributor, and an emulsion pump fluidly connected with the mixer and the emulsion outlet, wherein the emulsion pump is located outside the reactor vessel. This disclosure also relates to a split SA alkylation reactor system wherein a single horizontal reactor vessel is divided to accommodate two reactor systems. This disclosure also relates to alkylation processes using the reactor systems. This disclosure also relates to methods of converting an HF alkylation unit to a SA alkylation unit. This disclosure also relates to converted SA alkylation units and alkylation processes performed in the converted SA alkylation units.
This disclosure relates to methods of converting an HF alkylation unit which utilizes HF as a reaction catalyst to a sulfuric acid alkylation unit which utilizes sulfuric acid as a reaction catalyst. This disclosure also relates to a segmented sulfuric acid settler for separating a sulfuric acid phase from a hydrocarbon phase. This disclosure also relates to methods of converting a vertical HF acid settler to a segmented sulfuric acid settler. This disclosure also relates to converted sulfuric acid alkylation units and alkylation processes performed in the converted sulfuric acid alkylation units.
42 - Scientific, technological and industrial services, research and design
Goods & Services
Engineering and engineering process design services in the field of petroleum refining alkylation, by which a hydrofluoric acid alkylation unit is converted to a sulfuric acid alkylation unit
4.
Process for producing diesel with low levels of sulfur
This disclosure relates to a process for producing diesel with reduced levels of sulfur. The process involves (a) providing a diesel feed comprising a diesel having a sulfur content in the range of about 20 to about 10,000 wppm; (b) feeding the diesel feed and a hydrogen rich gas to a reaction zone comprising a hydrotreating catalyst to produce a hydrotreated diesel effluent comprising diesel and hydrogen sulfide; and (c) removing hydrogen sulfide from the hydrotreated diesel effluent to produce a diesel product having a sulfur content no more than about 100 wppm; wherein hydrogen consumption in the reaction zone is in the range of about −150 to about 150 scf/bbl.
C10G 45/08 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
C10G 67/02 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
C10L 1/08 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 65/04 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
A process for the hydroprocessing of a gas oil (GO) hydrocarbon feed to provide high yield of a diesel fraction. The process comprises a liquid-full hydrotreating reaction zone followed by a liquid-full hydrocracking reaction zone. A refining zone may be integrated with the hydrocracking reaction zone. Ammonia and other gases formed during the hydrotreatment are removed in a separation step prior to hydrocracking.
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
A continuous mixing reactor has an outer shell having a cylindrical portion with a central section and two opposite conical end sections; a circulation tube within the shell so that an annular passage forms between the shell and the circulation tube; an impeller within and positioned adjacent to one end of the circulation tube; and heat exchange means penetrating the outer shell and extending into the end of the circulation tube opposite the impeller. The outer shell has a hydraulic head forming one end of the shell, a heat exchange medium header at the opposite end of the shell. The circulation tube nearer the heat exchange medium header terminates at or downstream from a tangential plane extending through the shell at the intersection of the central section and the conical end section of the cylindrical portion of shell. The reactor is useful in an alkylation process.
Novel liquid-full process for improving cold flow properties and increasing yield of middle distillate fuel feedstock by hydrotreating and dewaxing the feedstock in liquid-full reactors.
C10G 65/04 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 45/58 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins
C10G 45/60 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins characterised by the catalyst used
C10G 45/62 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
C10G 45/64 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
A process for the hydroprocessing of a low-value light cycle oil (LCO) hydrocarbon feed to provide a high-value diesel-range product. The process comprises a hydrotreatment stage followed by a hydrocracking stage, each of which is conducted under liquid-full reaction conditions wherein substantially all the hydrogen supplied to the hydrotreating and hydrocracking reactions is dissolved in the liquid-phase hydrocarbon feed. Ammonia and optionally other gases formed during hydrotreatment are removed in a separation step prior to hydrocracking. The LCO feed is advantageously converted to diesel in high yield with little loss of hydrocarbon to naphtha.
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
A process for the hydroprocessing of a gas oil (GO) hydrocarbon feed to provide high yield of a diesel fraction. The process comprises a liquid-full hydrotreating reaction zone followed by a liquid-full hydrocracking reaction zone. A refining zone may be integrated with the hydrocracking reaction zone. Ammonia and other gases formed during the hydrotreatment are removed in a separation step prior to hydrocracking.
C10G 45/02 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing
C10G 45/06 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
C10G 45/08 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
C10G 45/20 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with moving solid particles according to the "fluidised bed" technique
C10G 47/00 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
A process for the hydroprocessing of a gas oil (GO) hydrocarbon feed to provide high yield of a diesel fraction. The process comprises a liquid-full hydrotreating reaction zone followed by a liquid-full hydrocracking reaction zone. A refining zone may be integrated with the hydrocracking reaction zone. Ammonia and other gases formed during the hydrotreatment are removed in a separation step prior to hydrocracking.
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 45/02 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing
C10G 45/08 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
C10G 47/00 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions
This disclosure relates to liquid-full processes for hydroprocessing a light cycle oil (LCO). The processes involve hydrotreatment followed by selective ring opening in the presence of hydrotreating catalyst and selective ring opening catalyst respectively. The selective ring opening catalyst can be either zeolite ring opening catalyst or amorphous ring opening catalyst. In aspects of zeolite ring opening catalyst, the volume ratio of the total amount of the zeolite ring opening catalyst to the total amount of the hydrotreating catalyst is from about 0.2 to about 1.5. In aspects of amorphous ring opening catalyst, the volume ratio of the total amount of the amorphous ring opening catalyst to the total amount of the hydrotreating catalyst is from about 0.2 to about 3.
C10G 45/02 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing
C10G 45/08 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 45/48 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
C10G 45/58 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins
C10G 45/60 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins characterised by the catalyst used
C10G 65/08 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 69/02 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
C10G 45/50 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metal, or compounds thereof
C10G 45/54 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
C10G 65/04 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
A continuous mixing reactor has an outer shell having a cylindrical portion with a central section and two opposite conical end sections; a circulation tube within the shell so that an annular passage forms between the shell and the circulation tube; an impeller within and positioned adjacent to one end of the circulation tube; and heat exchange means penetrating the outer shell and extending into the end of the circulation tube opposite the impeller. The outer shell has a hydraulic head forming one end of the shell, a heat exchange medium header at the opposite end of the shell. The circulation tube nearer the heat exchange medium header terminates at or downstream from a tangential plane extending through the shell at the intersection of the central section and the conical end section of the cylindrical portion of shell. The reactor is useful in an alkylation process.
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
B01J 19/18 - Stationary reactors having moving elements inside
C07C 2/00 - Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
C07C 2/54 - Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons, or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
Novel liquid-full process for improving cold flow properties and increasing yield of middle distillate fuel feedstock by hydrotreating and dewaxing the feedstock in liquid-full reactors.
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 45/58 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins
C10G 45/60 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins characterised by the catalyst used
C10G 45/62 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
C10G 45/64 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
Novel liquid-full process for improving cold flow properties and increasing yield of middle distillate fuel feedstock by hydrotreating and dewaxing the feedstock in liquid-full reactors.
C10G 65/04 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 45/58 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins
C10G 45/60 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins characterised by the catalyst used
C10G 45/62 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
C10G 45/64 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
A process for the hydroprocessing of a low-value light cycle oil (LCO) hydrocarbon feed to provide a high-value diesel-range product. The process comprises a hydrotreatment stage followed by a hydrocracking stage, each of which is conducted under liquid-full reaction conditions wherein substantially all the hydrogen supplied to the hydrotreating and hydrocracking reactions is dissolved in the liquid-phase hydrocarbon feed. Ammonia and optionally other gases formed during hydrotreatment are removed in a separation step prior to hydrocracking. The LCO feed is advantageously converted to diesel in high yield with little loss of hydrocarbon to naphtha.
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
16.
Hydroprocessing light cycle oil in liquid-full reactors
A process for the hydroprocessing of a low value light cycle oil (LCO) hydrocarbon feed to provide a high-value diesel-range product. The process comprises a hydrotreatment stage followed by a hydrocracking stage, each of which is conducted under liquid-full reaction conditions wherein substantially all the hydrogen supplied to the hydrotreating and hydrocracking reactions is dissolved in the liquid-phase hydrocarbon feed. Ammonia and other gases formed during hydrotreatment are removed in a separation step prior to hydrocracking. The LCO feed is advantageously converted to diesel in high yield with little loss of hydrocarbon to naphtha.
A process for the hydroprocessing of a low-value light cycle oil (LCO) hydrocarbon feed to provide a high-value diesel-range product. The process comprises a hydrotreatment stage followed by a hydrocracking stage, each of which is conducted under liquid-full reaction conditions wherein substantially all the hydrogen supplied to the hydrotreating and hydrocracking reactions is dissolved in the liquid-phase hydrocarbon feed. Ammonia and optionally other gases formed during hydrotreatment are removed in a separation step prior to hydrocracking. The LCO feed is advantageously converted to diesel in high yield with little loss of hydrocarbon to naphtha.
C10G 57/00 - Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
A process of hydroprocessing a hydrocarbon in a down flow reactor comprising one or more hydroprocessing-catalyst beds. The hydrocarbon feed is mixed with hydrogen and optionally diluent to form a liquid feed mixture wherein hydrogen is dissolved in the mixture, and the liquid feed mixture is introduced into the down flow reactor under hydroprocessing conditions. The hydroprocessing-catalyst bed(s) are liquid-full and the feed reacts by contact with the catalyst. Hydrogen gas is injected into at least one of the hydroprocessing-catalyst beds such that at least part of the hydrogen consumed in that bed is replenished and the liquid-full condition is maintained. In a multi-bed reactor, hydrogen gas may be injected into more than one or all of the hydroprocessing-catalyst beds.
C10G 45/02 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing
C10G 65/14 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
19.
Process for direct hydrogen injection in liquid full hydroprocessing reactors
A process of hydroprocessing a hydrocarbon in a down flow reactor comprising one or more hydroprocessing-catalyst beds. The hydrocarbon feed is mixed with hydrogen and optionally diluent to form a liquid feed mixture wherein hydrogen is dissolved in the mixture, and the liquid feed mixture is introduced into the down flow reactor under hydroprocessing conditions. The hydroprocessing-catalyst bed(s) are liquid-full and the feed reacts by contact with the catalyst. Hydrogen gas is injected into at least one of the hydroprocessing-catalyst beds such that at least part of the hydrogen consumed in that bed is replenished and the liquid-full condition is maintained. In a multi-bed reactor, hydrogen gas may be injected into more than one or all of the hydroprocessing-catalyst beds.
C10G 65/02 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
C10G 49/00 - Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups , , , , or
20.
Two phase hydroprocessing process as pretreatment for tree-phase hydroprocessing process
The present invention provides a process for hydroprocessing comprising treating a hydrocarbon feed in a first two-phase hydroprocessing zone having a liquid recycle, producing product effluent, which is contacted with a catalyst and hydrogen in a downstream three-phase hydroprocessing zone, wherein at least a portion of the hydrogen supplied to the three-phase zone is a hydrogen-rich recycle gas stream. Optionally, the product effluent from the first two-phase hydroprocessing zone is fed to a second two-phase hydroprocessing zone containing a single-liquid-pass reactor. The two-phase hydroprocessing zones comprise two or more catalyst beds disposed in liquid-full reactors. The three-phase hydroprocessing zone comprises one or more single-liquid-pass catalyst beds disposed in a trickle bed reactor.
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 45/02 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing
C10G 47/34 - Organic compounds, e.g. hydrogenated hydrocarbons
C10G 65/02 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
21.
TWO PHASE HYDROPROCESSING PROCESS AS PRETREATMENT FOR THREE-PHASE HYDROPROCESSING PROCESS
The present invention provides a process for hydroprocessing comprising treating a hydrocarbon feed in a first two-phase hydroprocessing zone having a liquid recycle, producing product effluent, which is contacted with a catalyst and hydrogen in a downstream three-phase hydroprocessing zone, wherein at least a portion of the hydrogen supplied to the three-phase zone is a hydrogen-rich recycle gas stream. Optionally, the product effluent from the first two-phase hydroprocessing zone is fed to a second two-phase hydroprocessing zone containing a single-liquid-pass reactor. The two-phase hydroprocessing zones comprise two or more catalyst beds disposed in liquid-full reactors. The three-phase hydroprocessing zone comprises one or more single-liquid-pass catalyst beds disposed in a trickle bed reactor.
The present invention provides a process for hydroprocessing hydrocarbons in liquid full reactors with one or more independent liquid recycle streams. The process operates as a liquid-full process, wherein all of the hydrogen dissolves in the liquid phase and one or more of the recycle streams may actually be zero. Hydrocarbons can be converted in the process to provide liquid products such as clean fuels with multiple desired properties.
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 65/04 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
23.
HYDROPROCESSING PROCESS USING INCREASING CATALYST VOLUME ALONG SUCCESSIVE CATALYST BEDS IN LIQUID-FULL REACTORS
The present invention provides a process for hydroprocessing hydrocarbons comprising two or more catalyst beds disposed in sequence and wherein the catalyst volume increases in each subsequent catalyst bed. The process operates as a liquid-full process, wherein all of the hydrogen dissolves in the liquid phase. Hydrocarbons can be converted in the process to provide a liquid product including clean fuels with multiple desired properties such as low density and high cetane number.
B01J 8/04 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 65/04 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
24.
Liquid-full hydroprocessing to improve sulfur removal using one or more liquid recycle streams
The present invention provides a process for hydroprocessing hydrocarbons in liquid full reactors with one or more independent liquid recycle streams. The process operates as a liquid-full process, wherein all of the hydrogen dissolves in the liquid phase and one or more of the recycle streams may actually be zero. Hydrocarbons can be converted in the process to provide liquid products such as clean fuels with multiple desired properties.
C10G 65/04 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
25.
Hydroprocessing process using uneven catalyst volume distribution among catalyst beds in liquid-full reactors
The present invention provides a process for hydroprocessing hydrocarbons with uneven catalyst volume distribution among two or more catalyst beds. The process operates as a liquid-full process, wherein all of the hydrogen dissolves in the liquid phase. Hydrocarbons can be converted in the process to provide a liquid product including clean fuels with multiple desired properties such as low density and high cetane number.
C10G 65/02 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
B01J 8/04 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 65/04 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 65/10 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
26.
TARGETED PRETREATMENT AND SELECTIVE RING OPENING IN LIQUID-FULL REACTORS
A process for hydroprocessing hydrocarbons in a combined targeted pretreatment and selective ring-opening unit wherein the targeted pretreatment comprises at least two stages in a single liquid recycle loop. The process operates as a liquid-full process, wherein all of the hydrogen dissolves in the liquid phase. Heavy hydrocarbons and light cycle oils can be converted in the process to provide a liquid product having over 50% in the diesel boiling range, with properties to meet use in low sulfur diesel.
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 45/48 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
C10G 45/58 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 69/02 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
27.
Targeted pretreatment and selective ring opening in liquid-full reactors
A process for hydroprocessing hydrocarbons in a combined targeted pretreatment and selective ring-opening unit wherein the targeted pretreatment comprises at least two stages in a single liquid recycle loop. The process operates as a liquid-full process, wherein all of the hydrogen dissolves in the liquid phase. Heavy hydrocarbons and light cycle oils can be converted in the process to provide a liquid product having over 50% in the diesel boiling range, with properties to meet use in low sulfur diesel.
C10G 65/02 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 45/08 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 45/48 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
C10G 45/58 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins
C10G 45/60 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour pointSelective hydrocracking of normal paraffins characterised by the catalyst used
C10G 65/08 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
C10G 69/02 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
28.
Hydroprocessing of heavy hydrocarbon feeds in liquid-full reactors
A process to treat a heavy hydrocarbon feed in a liquid-full hydroprocessing reactor is disclosed. The heavy feed has a high asphaltenes content, high viscosity, high density and high end boiling point. Hydrogen is fed in an equivalent amount of at least 160 liters of hydrogen, per liter of feed, l/l (900 scf/bbl). The feed is contacted with hydrogen and a diluent, which comprises, consists essentially of, or consists of recycle product stream. The hydroprocessed product has increased value for refineries, such as a feed for an fluid catalytic cracking (FCC) unit.
C10G 49/00 - Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups , , , , or
C10G 49/04 - Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups , , , , or characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
C10G 49/08 - Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups , , , , or characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
29.
HYDROPROCESSING OF HEAVY HYDROCARBON FEEDS IN LIQUID-FULL REACTORS
A process to treat a heavy hydrocarbon feed in a liquid-full hydroprocessing reactor is disclosed. The heavy feed has a high asphaltenes content, high viscosity, high density and high end boiling point. Hydrogen is fed in an equivalent amount of at least 160 liters of hydrogen, per liter of feed, l/l (900 scf/bbl). The feed is contacted with hydrogen and a diluent, which comprises, consists essentially of, or consists of recycle product stream. The hydroprocessed product has increased value for refineries, such as a feed for an fluid catalytic cracking (FCC) unit.
C10G 45/00 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
C10G 45/22 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing with hydrogen dissolved or suspended in the oil
C10G 47/20 - Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
42 - Scientific, technological and industrial services, research and design
Goods & Services
Engineering, design and technological consultation and
advice in the technological fields of refining and treatment
of petroleum and hydrocarbon products and petroleum and
hydrocarbon plant and reactor design.
31.
Catalytic process for converting renewable resources into paraffins for use as diesel blending stocks
A process for converting renewable resources such as vegetable oil and animal fat into paraffins in a single step which comprises contacting a feed which is a renewable resources with hydrogen and a catalyst which comprises a non-precious metal a first oxide and optionally a second oxide wherein at least one of the first oxide or second oxide comprises a zeolite, through hydrodeoxygenation and one or both of hydroisomerization and hydrocracking.
A process for converting renewable resources such as vegetable oil and animal fat into paraffins in a single step which comprises contacting a feed which is a renewable resources with hydrogen and a catalyst which comprises a non-precious metal and an oxide to produce a hydrocarbon product having a ratio of odd-numbered hydrocarbons to even-numbered hydrocarbons of at least 2:1.
A continuous liquid phase hydroprocessing process, apparatus and process control systems, where the need to circulate hydrogen gas through the catalyst is eliminated. By mixing and/or flashing the hydrogen and the oil to be treated in the presence of a solvent or diluent in which the hydrogen solubility is high relative to the oil feed, all of the hydrogen required in the hydroprocessing reactions may be available in solution. The oil/diluent/hydrogen solution can then be fed to a plug flow reactor packed with catalyst where the oil and hydrogen react. No additional hydrogen is required; therefore, the large trickle bed reactors can be replaced by much smaller tubular reactors. The amount of hydrogen added to the reactor can be used to control the liquid level in the reactor or the pressure in the reactor.
42 - Scientific, technological and industrial services, research and design
Goods & Services
Engineering, design and technological consultation and advice in the technological fields of refining and treatment of petroleum and hydrocarbon products and petroleum and hydrocarbon plant and reactor design
mixing machines for use in [ grease manufacturing and ] alkylation [ industrial flash evaporating units for use in chemical reactions during alkylation ] [ and the manufacture of consumer products ]