09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Electric motors for machines. Computer software platforms, downloadable, for creating
rules and logic for automated process control of machines
through controllers and variable speed drives incorporating
a compatible interpreter; computer software platforms,
recorded, for creating rules and logic for automated process
control of machines through controllers and variable speed
drives incorporating a compatible interpreter; electrical
controllers; programmable logic controller (PLC); electrical
integrated environmental control systems comprising
downloadable software for keeping combined temperature,
humidity, pressure and composition within acceptable limits. Providing temporary use of non-downloadable cloud-based
software for monitoring, controlling and optimizing motors
and environmental controls and alert notification systems
relating thereto.
09 - Scientific and electric apparatus and instruments
38 - Telecommunications services
Goods & Services
Computer hardware and recorded software system for remotely
monitoring environmental conditions and controlling devices
within a building, facility, grounds, or designated spatial
area. Telecommunication services, namely, providing e-mail
notification alerts via the internet notifying individuals
of building automation systems and status of related motors,
Variable Refrigerant Flow (VRF) Systems, HVAC systems
including building monitoring, system fault detection, and
diagnostics to improve the efficiency and health of a
building, as well as lighting, indoor air quality, energy
use and environmental conditions.
A power electronics assembly for an electric motor controller. The power electronics assembly comprises an insulated metal substrate, a composite material substrate, and a bolt having a bolt head and a bolt shaft for mechanically coupling the composite material substrate to the insulated metal substrate. The power electronics assembly also includes an electrically conductive sleeve configured to be held between a first electrical contact carried by the insulated metal substrate and a second electrical contact carried by the composite material substrate and the bolt is configured to clamp the composite material substrate to the insulated metal substrate to force the electrically conductive sleeve against the first electrical contact and the second electrical contact.
H05K 1/14 - Structural association of two or more printed circuits
H05K 1/18 - Printed circuits structurally associated with non-printed electric components
H05K 3/32 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
H05K 3/36 - Assembling printed circuits with other printed circuits
H05K 3/00 - Apparatus or processes for manufacturing printed circuits
09 - Scientific and electric apparatus and instruments
38 - Telecommunications services
Goods & Services
(1) Computer hardware and recorded software system for remotely monitoring environmental conditions and controlling devices within a building, facility, grounds, or designated spatial area. (1) Telecommunication services, namely, providing e-mail notification alerts via the internet notifying individuals of building automation systems and status of related motors, Variable Refrigerant Flow (VRF) Systems, HVAC systems including building monitoring, system fault detection, and diagnostics to improve the efficiency and health of a building, as well as lighting, indoor air quality, energy use and environmental conditions.
5.
NOISE REDUCTION IN SWITCHED RELUCTANCE MOTOR WITH SELECTIVE RADIAL FORCE HARMONICS REDUCTION
An SR drive with an acoustic noise reduction system for reducing vibration and acoustic noise in a switched reluctance motor (SRM). The vibration and acoustic noise at specific harmonics of current excitation in SRM are in a proportional relationship with the radial force harmonics acting at SRM stator teeth. The acoustic noise reduction system includes a processor on which is installed an acoustic noise reduction application designed to derive an optimum current waveform for generating an average torque satisfying an optimum torque condition and creating radial force with minimum amplitude at the desired order of harmonics of current excitation. A reduction in the amplitude of the specific radial force harmonics utilizing the optimum current waveform minimizes the vibration and acoustic noise in the SRM. The acoustic noise reduction system applies turn-on and turn-off angles at the optimum current waveform to improve the system efficiency.
An SR drive with an acoustic noise reduction system for reducing vibration and acoustic noise in a switched reluctance motor (SRM). The vibration and acoustic noise at specific harmonics of current excitation in SRM are in a proportional relationship with the radial force harmonics acting at SRM stator teeth. The acoustic noise reduction system includes a processor on which is installed an acoustic noise reduction application designed to derive an optimum current waveform for generating an average torque satisfying an optimum torque condition and creating radial force with minimum amplitude at the desired order of harmonics of current excitation. A reduction in the amplitude of the specific radial force harmonics utilizing the optimum current waveform minimizes the vibration and acoustic noise in the SRM. The acoustic noise reduction system applies turn-on and turn-off angles at the optimum current waveform to improve the system efficiency.
A method for controlling switched reluctance machine (SRM) utilizing a SRM control system. The method allows for adaptive pulse positioning over a wide range of speeds and loads. An initial rotor position is provided for the SRM utilizing an initialization mechanism. A pinned point on a phase current waveform is defined during an initial current rise phase of the current waveform. A slope of the current rise is determined as the current waveform reaches the pinned point. The slope is then fed to the commutation module of the SRM control system. An error signal from calculated inductance or current slope is used as an input to a control loop in the SRM control system. The time determining module determines an optimum time signal to fire a next pulse. The optimum time signal is fed to the SRM for turning the plurality of SRM switches to on and off states.
A method and an apparatus for sensorless profiling of a current waveform in a switched-reluctance motor (SRM) is disclosed. The apparatus comprises a switched-reluctance motor having at least one stator pole and at least one rotor pole, a phase inverter controlled by a processor, a load, a converter and a software control module at the processor. The current waveform sets a target magnitude for a programmable dwell angle that scales a programmable waveform shape. Slope of the current is continuously monitored which allows the shaft speed to be updated multiple times and to track any change in speed and fix the dwell angle based on the shaft speed. The method reduces the overall radial force magnitude by compensating nonlinear torque production thereby reducing the acoustic noise reduction and torque ripple which results in computational efficiency of the SRM.
A switched reluctance machine comprising at least one rotor comprising a set of rotor poles arranged about a central axis, at least one stator positioned concentric to and radially outward from the central axis and the rotor, the stator having an outer surface and an outer surface active zone; a housing having a sleeve positioned only radially outward from the stator outer surface active zone; at least one housing endplate coupled to an end of said housing; wherein said stator has no direct connection to said housing, and wherein the number of rotor poles Rn and number of stator poles Sn utilizing a numerical relationship defined by a mathematical formula, Rn=2Sn−Fp, when Sn=m×Fp, wherein Fp is the maximum number of independent flux paths in the stator when stator and rotor poles are fully aligned, and m is the number of phases.
A system and method for reliable control of a high rotor pole switched reluctance machine (HRSRM) utilizing a sensorless reliable control system. The method comprising: energizing at least one of the plurality of stator phases; measuring a first current value and time taken by the first current value to reach a first peak value or preset threshold value of current; determining a self-inductance value; measuring a second current value and time taken by an adjacent un-energized stator phase to reach a second peak value of current; determining a mutual inductance value; and estimating a rotor position utilizing the self-inductance and mutual inductance values; and controlling the HRSRM based on the estimated rotor position.
p is the maximum number of independent flux paths in the stator when stator and rotor poles are fully aligned, and m is the number of phases. The mathematical formulation provides an improved noise performance and design flexibility to the machine. The mathematical formulation further provides a specific number of stator and rotor poles for a chosen m and Fp. The HRSRM can be designed with varying number of phases. The HRSRM provides a smoother torque profile due to a high number of strokes per revolution.
H02P 25/098 - Arrangements for reducing torque ripple
H02K 37/04 - Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors situated within the stators
14.
Method and apparatus for quasi-sensorless adaptive control of switched reluctance motor drives
A method and apparatus for quasi-sensorless adaptive control of a high rotor pole switched-reluctance motor (HRSRM). The method comprises the steps of: applying a voltage pulse to an inactive phase winding and measuring current response in each inactive winding. Motor index pulses are used for speed calculation and to establish a time base. Slope of the current is continuously monitored which allows the shaft speed to be updated multiple times and to track any change in speed and fix the dwell angle based on the shaft speed. The apparatus for quasi-sensorless control of a high rotor pole switched-reluctance motor (HRSRM) comprises a switched-reluctance motor having a stator and a rotor, a three-phase inverter controlled by a processor connected to the switched-reluctance motor, a load and a converter.
41 - Education, entertainment, sporting and cultural services
Goods & Services
Business assistance, advisory and consulting services in the field of environmental sustainability Entertainment services, namely, providing podcasts in the field of featuring sustainability leaders taking action to slow manmade climate change and preserve and sustain natural resources; Providing on-line videos featuring sustainability leaders taking action to slow manmade climate change and preserve and sustain natural resources, not downloadable
09 - Scientific and electric apparatus and instruments
12 - Land, air and water vehicles; parts of land vehicles
Goods & Services
Electric motors for machines; electric propulsion mechanisms
for water vehicles, namely, electric motors, water-jet
propulsion drives, and propeller drives; electric motors for
marine vessels; electric motors for aircraft; electricity
generators; current generators. Inverters; electrical controllers; electronic controls for
motors; programmable logic controller (plc); batteries,
electric, for vehicles; electric accumulators for vehicles;
batteries, electric; battery chargers; chargers for electric
batteries for vehicles; printed circuit boards; plates for
batteries; anodes; cathodes; capacitors; battery jars;
galvanic cells; cell switches for electricity; portable
power supplies; apparatus for charging electric vehicles and
plug-in hybrid electric vehicles including land-based,
marine and aerospace vehicles. Electric motors for land vehicles.
18.
Manufacturing-sensitive control of high rotor pole switched reluctance motors
A method for controlling switched reluctance machine (SRM) utilizing a SRM control system. The method allows for adaptive pulse positioning over a wide range of speeds and loads. An initial rotor position is provided for the SRM utilizing an initialization mechanism. A pinned point on a phase current waveform is defined during an initial current rise phase of the current waveform. A slope of the current rise is determined as the current waveform reaches the pinned point. The slope is then fed to the commutation module of the SRM control system. An error signal from calculated inductance or current slope is used as an input to a control loop in the SRM control system. The time determining module determines an optimum time signal to fire a next pulse. The optimum time signal is fed to the SRM for turning the plurality of SRM switches to on and off states.
A method and an apparatus for sensorless profiling of a current waveform in a switched-reluctance motor (SRM) is disclosed. The apparatus comprises a switched-reluctance motor having at least one stator pole and at least one rotor pole, a phase inverter controlled by a processor, a load, a converter and a software control module at the processor. The current waveform sets a target magnitude for a programmable dwell angle that scales a programmable waveform shape. Slope of the current is continuously monitored which allows the shaft speed to be updated multiple times and to track any change in speed and fix the dwell angle based on the shaft speed. The method reduces the overall radial force magnitude by compensating nonlinear torque production thereby reducing the acoustic noise reduction and torque ripple which results in computational efficiency of the SRM.
09 - Scientific and electric apparatus and instruments
12 - Land, air and water vehicles; parts of land vehicles
Goods & Services
Electric motors for machines; electric motors for marine vessels Inverters; Electrical controllers; Electronic controls for motors; Programmable logic controller (PLC); Batteries, electric, for vehicles; Electric accumulators for vehicles; Batteries, electric; Battery chargers; Chargers for electric batteries for vehicles; Printed circuit boards; Plates for batteries; Anodes; Cathodes; Capacitors; Galvanic cells; apparatus for charging electric vehicles and plug-in hybrid electric vehicles including land-based, marine and aerospace vehicles Electric motors for land vehicles
42 - Scientific, technological and industrial services, research and design
Goods & Services
Providing temporary use of non-downloadable cloud-based software for monitoring, controlling and optimizing motors and environmental controls and alert notification systems relating thereto; providing temporary use of online, non-downloadable computer software to allow users to create rules and logic for automated process control of machines by controllers and variable speed drives incorporating a compatible interpreter
22.
Method for reliable control of high rotor pole switched reluctance machine
A system and method for reliable control of a high rotor pole switched reluctance machine (HRSRM) utilizing a sensorless reliable control system. The method comprising: energizing at least one of the plurality of stator phases; measuring a first current value and time taken by the first current value to reach a first peak value or preset threshold value of current; determining a self-inductance value; measuring a second current value and time taken by an adjacent un-energized stator phase to reach a second peak value of current; determining a mutual inductance value; and estimating a rotor position utilizing the self-inductance and mutual inductance values; and controlling the HRSRM based on the estimated rotor position.
A gate driver circuit comprises a sensor, an amplifier, a regulator and a gate driver. The sensor is configured to sense a collector-emitter voltage and includes a first resistor and a second resistor connected in series, a high voltage diode connected between the series connected first and second resistors and a first capacitor connected parallel to the second resistor. The amplifier is configured to amplify a sensor output voltage and includes a non-inverting operational amplifier controlled by means of a plurality of resistors, a voltage follower connected to an output terminal of the non-inverting operational amplifier through a first diode and a third resistor connected across the first diode and the voltage follower. The regulator is configured to regulate a regulator output voltage based on an amplifier voltage. The gate driver is configured to connect/disconnect the regulator output voltage to the base terminal of the BJT.
H03K 17/60 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices the devices being bipolar transistors
H03K 17/06 - Modifications for ensuring a fully conducting state
H03K 17/14 - Modifications for compensating variations of physical values, e.g. of temperature
H01L 29/08 - Semiconductor bodies characterised by the shapes, relative sizes, or dispositions of the semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified, or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
H01L 29/10 - Semiconductor bodies characterised by the shapes, relative sizes, or dispositions of the semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified, or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
H01L 29/16 - Semiconductor bodies characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System in uncombined form
H03F 3/217 - Class D power amplifiersSwitching amplifiers
24.
Manufacturing-sensitive control of high rotor pole switched reluctance motors
A method for controlling switched reluctance machine (SRM) utilizing a SRM control system. The method allows for adaptive pulse positioning over a wide range of speeds and loads. An initial rotor position is provided for the SRM utilizing an initialization mechanism. A pinned point on a phase current waveform is defined during an initial current rise phase of the current waveform. A slope of the current rise is determined as the current waveform reaches the pinned point. The slope is then fed to the commutation module of the SRM control system. An error signal from calculated inductance or current slope is used as an input to a control loop in the SRM control system. The time determining module determines an optimum time signal to fire a next pulse. The optimum time signal is fed to the SRM for turning the plurality of SRM switches to on and off states.
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Electric motors for machines. Electronic controls for motors; programmable logic
controller; electronic control units for regulating switched
reluctance motors; inverters; electrical integrated control
systems for use in the field of environmental control for
keeping combined temperature, humidity, pressure and
composition within acceptable limits using software;
electrical integrated control system comprising recorded
environmental control software for keeping combined
temperature, humidity, pressure and composition within
acceptable limits. Providing temporary use of non-downloadable cloud-based
software for monitoring, controlling and optimizing motors
and environmental controls and alert notification systems
relating thereto; providing temporary use of online,
non-downloadable computer software to allow users to create
rules and logic for automated process control of machines by
controllers and variable speed drives incorporating a
compatible interpreter.
26.
Apparatus for quasi-sensorless adaptive control of switched reluct ange motor drives
A method and apparatus for quasi-sensorless adaptive control of a high rotor pole switched-reluctance motor (HRSRM). The method comprises the steps of: applying a voltage pulse to an inactive phase winding and measuring current response in each inactive winding. Motor index pulses are used for speed calculation and to establish a time base. Slope of the current is continuously monitored which allows the shaft speed to be updated multiple times and to track any change in speed and fix the dwell angle based on the shaft speed. The apparatus for quasi-sensorless control of a high rotor pole switched-reluctance motor (HRSRM) comprises a switched-reluctance motor having a stator and a rotor, a three-phase inverter controlled by a processor connected to the switched-reluctance motor, a load and a converter.
A switched reluctance machine exhibiting reduced noise and vibration, the machine comprising at least one rotor arranged to rotate about a central axis, the at least one rotor comprising a set of rotor poles arranged about the central axis; at least one stator positioned concentric to and radially outward from both the central axis and the at least one rotor, the at least one stator having an outer surface and an outer surface active zone; a housing having a sleeve positioned only radially outward from the stator outer surface active zone; at least one housing endplate coupled to an end of said housing; and wherein said stator has no direct connection to said housing.
H02K 37/04 - Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors situated within the stators
28.
Low-noise, high rotor pole switched reluctance motor
p is the maximum number of independent flux paths in the stator when stator and rotor poles are fully aligned, and m is the number of phases. The mathematical formulation provides an improved noise performance and design flexibility to the machine. The mathematical formulation further provides a specific number of stator and rotor poles for a chosen m and Fp. The HRSRM can be designed with varying number of phases. The HRSRM provides a smoother torque profile due to a high number of strokes per revolution.
H02P 25/098 - Arrangements for reducing torque ripple
H02K 37/04 - Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors situated within the stators
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
(1) Electric motors for machines.
(2) Electronic controls for motors for machines; programmable logic controller; electronic control units for regulating switched reluctance motors; power inverters; electronic industrial controls with integrated computer software for controlling temperature, humidity, pressure and material composition of industrial machinery within acceptable limits; electrical integrated control system, namely, recorded environmental control computer software for controlling temperature, humidity, pressure and material composition of industrial machinery within acceptable limits. (1) Providing temporary use of non-downloadable cloud-based software for monitoring, controlling and managing motors used in industrial applications and environmental controls and alert notification systems relating thereto, namely environmental control computer software for controlling temperature, humidity, pressure and material composition of industrial machinery within acceptable limits; providing temporary use of online, non-downloadable computer software for use with automation of electronic industrial controls and variable speed drives, for controlling industrial machinery and motors for machines.
30.
Method for reliable control of high rotor pole switched reluctance machine
A system and method for reliable control of a high rotor pole switched reluctance machine (HRSRM) utilizing a sensorless reliable control system. The method comprising: energizing at least one of the plurality of stator phases; measuring a first current value and time taken by the first current value to reach a first peak value or preset threshold value of current; determining a self-inductance value; measuring a second current value and time taken by an adjacent un-energized stator phase to reach a second peak value of current; determining a mutual inductance value; and estimating a rotor position utilizing the self-inductance and mutual inductance values; and controlling the HRSRM based on the estimated rotor position.
A high rotor pole switched reluctance machine (HRSRM) employs an axial and radial mirroring concept and is represented by a first Multiple Rotor Pole (MRP) formula and second Multiple Stator Pole (MSP) formula. A multiple rotor HRSRM comprises at least two rotors each having a plurality of rotor poles and at least two stators having a plurality of stator poles. The at least two rotors and the at least two stators are positioned about a central axis with the stator placed between the rotors. In other embodiments, the number of stators equals the number of rotors and effectively operate as a single stator and rotor. In yet another embodiment, the effective single stator and rotor type high rotor pole switched reluctance machine is realized as single stator and rotor positioned concentrically around a central axis.
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Electric motors for machines Computer software platforms, downloadable, for creating rules and logic for automated process control of machines through controllers and variable speed drives incorporating a compatible interpreter; Computer software platforms, recorded, for creating rules and logic for automated process control of machines through controllers and variable speed drives incorporating a compatible interpreter; Electrical controllers; Programmable logic controller (PLC); Electrical integrated environmental control systems comprising downloadable software for keeping combined temperature, humidity, pressure and composition within acceptable limits Providing temporary use of non-downloadable cloud-based software for monitoring, controlling and optimizing motors and environmental controls and alert notification systems relating thereto
33.
Low-noise, high rotor pole switched reluctance motor
p is the maximum number of independent flux paths in the stator when stator and rotor poles are fully aligned, and m is the number of phases. The mathematical formulation provides an improved noise performance and design flexibility to the machine. The mathematical formulation further provides a specific number of stator and rotor poles for a chosen m and Fp. The HRSRM can be designed with varying number of phases. The HRSRM provides a smoother torque profile due to a high number of strokes per revolution.
H02P 25/098 - Arrangements for reducing torque ripple
H02K 37/04 - Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors situated within the stators
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Electric motors for machine Electronic controls for motors; Programmable logic controller; Control units for regulating switched reluctance motors; inverters; Electrical integrated control systems for use in the field of environmental control for keeping combined temperature, humidity, pressure and composition within acceptable limits using software; Electrical integrated control system comprising recorded environmental control software for keeping combined temperature, humidity, pressure and composition within acceptable limits Providing temporary use of non-downloadable cloud-based software for monitoring, controlling and optimizing motors and environmental controls and alert notification systems relating thereto; providing temporary use of online, non-downloadable computer software to allow users to create rules and logic for automated process control of machines by controllers and variable speed drives incorporating a compatible interpreter
35.
Method for reliable control of high rotor pole switched reluctance machine
A system and method for reliable control of a high rotor pole switched reluctance machine (HRSRM) utilizing a sensorless reliable control system. The method comprising: energizing at least one of the plurality of stator phases; measuring a first current value and time taken by the first current value to reach a first peak value or preset threshold value of current; determining a self-inductance value; measuring a second current value and time taken by an adjacent un-energized stator phase to reach a second peak value of current; determining a mutual inductance value; and estimating a rotor position utilizing the self-inductance and mutual inductance values; and controlling the HRSRM based on the estimated rotor position.
A method of controlling a switched reluctance motor is disclosed herein. The motor comprises a stator carrying a plurality of phase windings and a rotor. The method comprises activating the phase windings in a sequence selected to apply torque to the rotor, wherein during a cycle of rotation of the rotor the phase windings switch between an active state in which current in the phase winding applies torque to the rotor and an inactive state; applying a voltage to a selected phase winding whilst the selected phase winding is in the inactive state to provide a flux in the selected phase winding; determining the current in the selected phase winding; determining the rotor angle based on the current and the flux; and controlling said activating based on the rotor angle.
A method and apparatus for quasi-sensorless adaptive control of a high rotor pole switched-reluctance motor (HRSRM). The method comprises the steps of: applying a voltage pulse to an inactive phase winding and measuring current response in each inactive winding. Motor index pulses are used for speed calculation and to establish a time base. Slope of the current is continuously monitored which allows the shaft speed to be updated multiple times and to track any change in speed and fix the dwell angle based on the shaft speed. The apparatus for quasi-sensorless control of a high rotor pole switched-reluctance motor (HRSRM) comprises a switched-reluctance motor having a stator and a rotor, a three-phase inverter controlled by a processor connected to the switched-reluctance motor, a load and a converter.
09 - Scientific and electric apparatus and instruments
Goods & Services
(1) Electrical integrated control systems comprising computer hardware and software for keeping combined temperature, humidity, pressure and composition within acceptable limits.
(2) Electrical integrated control systems comprising electric motors for keeping combined temperature, humidity, pressure and composition within acceptable limits.
09 - Scientific and electric apparatus and instruments
Goods & Services
(1) Electrical integrated control systems comprising electric motors for keeping combined temperature, humidity, pressure and composition within acceptable limits.
(2) Electrical integrated control systems comprising computer hardware and software for keeping combined temperature, humidity, pressure and composition within acceptable limits.
09 - Scientific and electric apparatus and instruments
Goods & Services
Electrical integrated control systems for use in the field
of environmental control software for keeping combined
temperature, humidity, pressure and composition within
acceptable limits.
09 - Scientific and electric apparatus and instruments
Goods & Services
(1) Electrical integrated control systems for use in the field of environmental control software for keeping combined temperature, humidity, pressure and composition within acceptable limits
09 - Scientific and electric apparatus and instruments
Goods & Services
(1) Electrical integrated control systems for use in the field of environmental control software for keeping combined temperature, humidity, pressure and composition within acceptable limits
09 - Scientific and electric apparatus and instruments
Goods & Services
(1) Electrical integrated control systems for use in the field of environmental control software for keeping combined temperature, humidity, pressure and composition within acceptable limits
44.
Method for reliable control of high rotor pole switched reluctance machine
A system and method for reliable control of a high rotor pole switched reluctance machine (HRSRM) utilizing a sensorless reliable control system. The method comprising: energizing at least one of the plurality of stator phases; measuring a first current value and time taken by the first current value to reach a first peak value or preset threshold value of current; determining a self-inductance value; measuring a second current value and time taken by an adjacent un-energized stator phase to reach a second peak value of current; determining a mutual inductance value; and estimating a rotor position utilizing the self-inductance and mutual inductance values; and controlling the HRSRM based on the estimated rotor position.
A method and apparatus for quasi-sensorless adaptive control of a high rotor pole switched-reluctance motor (HRSRM). The method comprises the steps of: applying a voltage pulse to an inactive phase winding and measuring current response in each inactive winding. Motor index pulses are used for speed calculation and to establish a time base. Slope of the current is continuously monitored which allows the shaft speed to be updated multiple times and to track any change in speed and fix the dwell angle based on the shaft speed. The apparatus for quasi-sensorless control of a high rotor pole switched-reluctance motor (HRSRM) comprises a switched-reluctance motor having a stator and a rotor, a three-phase inverter controlled by a processor connected to the switched-reluctance motor, a load and a converter.
A gate driver circuit comprises a sensor, an amplifier, a regulator and a gate driver. The sensor is configured to sense a collector-emitter voltage and includes a first resistor and a second resistor connected in series, a high voltage diode connected between the series connected first and second resistors and a first capacitor connected parallel to the second resistor. The amplifier is configured to amplify a sensor output voltage and includes a non-inverting operational amplifier controlled by means of a plurality of resistors, a voltage follower connected to an output terminal of the non-inverting operational amplifier through a first diode and a third resistor connected across the first diode and the voltage follower. The regulator is configured to regulate a regulator output voltage based on an amplifier voltage. The gate driver is configured to connect/disconnect the regulator output voltage to the base terminal of the BJT.
H03K 17/60 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices the devices being bipolar transistors
H03K 17/06 - Modifications for ensuring a fully conducting state
H03K 17/14 - Modifications for compensating variations of physical values, e.g. of temperature
H01L 29/10 - Semiconductor bodies characterised by the shapes, relative sizes, or dispositions of the semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified, or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
H01L 29/08 - Semiconductor bodies characterised by the shapes, relative sizes, or dispositions of the semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified, or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
H01L 29/16 - Semiconductor bodies characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System in uncombined form
A high rotor pole switched reluctance machine (HRSRM) employs an axial and radial mirroring concept and is represented by a first Multiple Rotor Pole (MRP) formula and second Multiple Stator Pole (MSP) formula. A multiple rotor HRSRM comprises at least two rotors each having a plurality of rotor poles and at least two stators having a plurality of stator poles. The at least two rotors and the at least two stators are positioned about a central axis with the stator placed between the rotors. In other embodiments, the number of stators equals the number of rotors and effectively operate as a single stator and rotor. In yet another embodiment, the effective single stator and rotor type high rotor pole switched reluctance machine is realized as single stator and rotor positioned concentrically around a central axis.
A high rotor pole switched reluctance machine (HRSRM) employs an axial and radial mirroring concept and is represented by a first Multiple Rotor Pole (MRP) formula and second Multiple Stator Pole (MSP) formula. A multiple rotor HRSRM comprises at least two rotors each having a plurality of rotor poles and at least two stators having a plurality of stator poles. The at least two rotors and the at least two stators are positioned about a central axis with the stator placed between the rotors. In other embodiments, the number of stators equals the number of rotors and effectively operate as a single stator and rotor. In yet another embodiment, the effective single stator and rotor type high rotor pole switched reluctance machine is realized as single stator and rotor positioned concentrically around a central axis.
09 - Scientific and electric apparatus and instruments
Goods & Services
Electric switched reluctance motors for machines; Motors and pumps for refrigerators and HVAC systems; AC variable frequency drives that are used to control small and medium-sized motors in applications such as manufacturing processes, HVAC and pumps Programmable logic controller; Electronic controls for motors; Control units for regulating switched reluctance motors; inverters; computer software to allow users to create rules and logic for automated process control of machines by controllers and variable speed drives incorporating a compatible interpreter; electronic controls that are used to control small and medium-sized motors in applications such as manufacturing processes, HVAC and pumps
09 - Scientific and electric apparatus and instruments
Goods & Services
Electric switched reluctance motors for machines Programmable logic controller; Electronic controls for motors; Control units for regulating switched reluctance motors; inverters; computer software to allow users to create rules and logic for automated process control of machines by controllers and variable speed drives incorporating a compatible interpreter
52.
Method for reliable control of high rotor pole switched reluctance machine
A system and method for reliable control of a high rotor pole switched reluctance machine (HRSRM) utilizing a sensorless reliable control system. The method comprising: energizing at least one of the plurality of stator phases; measuring a first current value and time taken by the first current value to reach a first peak value or preset threshold value of current; determining a self-inductance value; measuring a second current value and time taken by an adjacent un-energized stator phase to reach a second peak value of current; determining a mutual inductance value; and estimating a rotor position utilizing the self-inductance and mutual inductance values; and controlling the HRSRM based on the estimated rotor position.
A system and method for reliable control of a high rotor pole switched reluctance machine (HRSRM) utilizing a sensorless reliable control system. The method comprising: energizing at least one of the plurality of stator phases; measuring a first current value and time taken by the first current value to reach a first peak value or preset threshold value of current; determining a self-inductance value; storing the self-inductance value and the first current value for each of the stator phases; measuring a second current value and time taken by an adjacent un-energized stator phase to reach a second peak value of current; determining a mutual inductance value; storing the mutual inductance value and the second current value for each of the stator phases; estimating a rotor position utilizing the self-inductance and mutual inductance values; and controlling the HRSRM based on the estimated rotor position.
09 - Scientific and electric apparatus and instruments
Goods & Services
computer software to allow users to create rules and logic for automated process control of machines by controllers and variable speed drives incorporating a compatible interpreter
55.
Mirroring of high rotor pole switched reluctance machines
A high rotor pole switched reluctance machine (HRSRM) employs an axial and radial mirroring concept and is represented by a first Multiple Rotor Pole (MRP) formula and second Multiple Stator Pole (MSP) formula. A multiple rotor HRSRM comprises at least two rotors each having a plurality of rotor poles and at least one stator having a plurality of stator poles. The at least two rotors and the at least one stator are positioned about a central axis with the stator placed between, and laterally adjacent to the rotors. A multiple stator HRSRM comprises at least two stators having a plurality of stator poles and at least one rotor having a plurality of rotor poles. The at least two stators and at least one rotor are positioned about a central axis with the rotor placed between and laterally adjacent to the stators.
A system and method for reliable control of a high rotor pole switched reluctance machine (HRSRM) utilizing a sensorless reliable control system. The method comprising: energizing at least one of the plurality of stator phases; measuring a first current value and time taken by the first current value to reach a first peak value or preset threshold value of current; determining a self-inductance value; storing the self-inductance value and the first current value for each of the stator phases; measuring a second current value and time taken by an adjacent un-energized stator phase to reach a second peak value of current; determining a mutual inductance value; storing the mutual inductance value and the second current value for each of the stator phases;
estimating a rotor position utilizing the self-inductance and mutual inductance values; and controlling the HRSRM based on the estimated rotor position.
A hybrid energy storage system for supplying power to an application with a fluctuating load profile, such as, for example, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, wind energy harvesting equipment and solar energy harvesting equipment. The hybrid energy storage system includes an ultra-capacitor electrically connected to a DC bus and a power source electrically connected to the DC bus via a controlled switch. The hybrid energy storage system further including a DC/DC converter connected between the power source and the ultra-capacitor, the DC/DC converter boosting a voltage of the power source to charge the ultra-capacitor. The DC/DC converter is preferably controlled to maintain a voltage of the ultra-capacitor at a higher value than the voltage of the power source.
An electro-mechanical drive train for a hybrid electric vehicle. The electro-mechanical drive train includes a housing and a pinion shaft having a first end disposed within the housing and a second end in communication with a combustion engine. A differential is disposed within the housing and in combination with the end of the pinion shaft. An electric motor is also disposed within the housing and in actuating combination with the pinion shaft.
This invention relates to a power module for a plug-in hybrid electric vehicle including an integrated converter having a rectifier changing AC to DC, a DC/DC converter changing from a first voltage to a second voltage, and a battery storing electrical energy. The integrated converter operates in three modes 1) AC plug-in charging mode, 2) boost mode supplying power from the battery to the electrical bus and 3) buck mode supplying power from the electrical bus to the battery. The integrated converter utilizes the same single inductor during each of the three operating modes to reduce cost and weight of the system.
An electric energy storage system (EESS) for providing a power management solution for a multi-subsystem energy storage in electric, hybrid electric, and fuel cell vehicles. The EESS has a controller that determines when to draw power from each subsystem as needed by the vehicle.