A surgical system for performing a capsulotomy of a lens capsule of an eye includes an elastic ring, a suction cup, an interface, a converter, and a control console. The elastic ring includes a conductive surface. The interface may be coupled to an air port and/or a fluid line of a phacomachine. The converter detects a pulse of air from the phacomachine via the interface, and produce an electrical signal in response. Fluid received from the phacomachine is delivered into the suction cup. The system is configured to remove the fluid from the suction cup and between the suction cup and a surface of the eye to form a suction seal. The control console is configured to, in response to receiving the electrical signal, drive a series of electrical pulses through the conductive surface of the elastic ring, causing the elastic ring to perform a tissue cutting operation.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61F 9/008 - Methods or devices for eye surgery using laser
2.
SUPERELASTIC NITINOL RING FOR CATARACT CAPSULOTOMY
A method for manufacturing a super elastic nitinol ring. The method includes compressing a nitinol wire on a first side and a second side to produce permanently flattened edges and cutting off a portion of the nitinol wire on a third side and a fourth side to produce flattened edges. The method includes producing a modified nitinol wire with a rectangular cross section formed by the flattened edges on the four sides, bending the modified nitinol wire into a ring shape such that a first end of the modified nitinol wire aligns with a second end of the modified nitinol wire; and permanently coupling the first end to the second end to produce a nitinol ring. The nitinol ring is coupled to a capsulotomy device such that the nitinol ring, upon receiving current flow from the capsulotomy device, produces heat sufficient to cut tissue in contact with the nitinol ring.
C22F 1/10 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
3.
SUPERELASTIC NITINOL RING FOR CATARACT CAPSULOTOMY
A method for manufacturing a super elastic nitinol ring. The method includes compressing a nitinol wire on a first side and a second side to produce permanently flattened edges and cutting off a portion of the nitinol wire on a third side and a fourth side to produce flattened edges. The method includes producing a modified nitinol wire with a rectangular cross section formed by the flattened edges on the four sides, bending the modified nitinol wire into a ring shape such that a first end of the modified nitinol wire aligns with a second end of the modified nitinol wire; and permanently coupling the first end to the second end to produce a nitinol ring. The nitinol ring is coupled to a capsulotomy device such that the nitinol ring, upon receiving current flow from the capsulotomy device, produces heat sufficient to cut tissue in contact with the nitinol ring.
A surgical device and procedure are provided for smoothly and easily accessing tissue to perform microsurgery, including a capsulotomy of a lens capsule of an eye. The device includes a handpiece with a tip for insertion into an incision in the cornea of the eye. A sliding element is disposed within the handpiece and a suction cup is mounted to the sliding element. The sliding element can be translated to move the suction cup into and out of the handpiece. A compression mechanism associated with the suction cup and the handpiece compresses the suction cup for deployment through the tip of the handpiece. The suction cup can expand inside the anterior chamber into a cutting position on the lens capsule. A cutting element mounted to the suction cup is used to cut a portion of the lens capsule and to remove the portion from the eye. The cutting element may be mounted to a cutting element support structure in a way that prevents heating of the device.
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
5.
HYDRODISSECTION AND POSTERIOR CAPSULE OPACIFICATION PREVENTION DURING CAPSULOTOMY PROCEDURE
Embodiments of the invention provide hydrodis section and /or PCO prevention or reduction in a patient undergoing eye surgery. In one embodiment, the invention is a surgical device for cutting and excising a portion of tissue, for example in performing a lens capsulotomy. A capsulotomy tip is inserted into an eye through an incision in the surface of the eye. The capsulotomy tip includes a suction cup to provide suction to the lens capsule. Then suction is applied via the suction cup to secure the capsulotomy tip to the eye. In some embodiments, after the capsulotomy tip is secured to the lens capsule, a cutting element of the capsulotomy tip is used to cut a tissue of the eye. Fluid is pushed through the capsulotomy tip and the capsulotomy tip is removed from the eye. Moreover, disclosed is an intraocular lens (IOL) to be used in conjunction with the surgical device.
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A61F 9/008 - Methods or devices for eye surgery using laser
A61M 1/00 - Suction or pumping devices for medical purposesDevices for carrying-off, for treatment of, or for carrying-over, body-liquidsDrainage systems
A device is described herein for performing capsulotomies that improves suction uniformity and produces rolled capsulotomy edges. The device includes a suction cup that forms a tapered circumferential suction chamber which enables suction to be applied to a tissue in a first direction. The tapered circumferential suction chamber decreases in cross-sectional area from a proximal end of the device towards a distal end of the device. The device further includes a stem coupled to the suction cup to provide suction to the suction cup. The stem forms a neck that enables fluid flow to the suction cup in a direction substantially perpendicular to the first direction. The device further includes a cutting element configured to excise the tissue.
A design is described herein for rings and for cutting rings for a device used in capsulotomy procedures. A set of ring dimensions can describe a desired height of a ring at each location of the ring. The set of ring dimensions is also associated with an intended wall thickness, and thus is associated with an intended cross-sectional area at each ring location. A wall thickness at each portion of a can vary from the intended wall thickness specified by the set of ring dimensions at various locations of the ring. At these locations, the height of the ring can be varied such that the resulting cross-sectional area of the ring at these locations is substantially similar to the intended cross-sectional area of the ring at the locations.
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
8.
SURGICAL RING DESIGN WITH VARYING WALL THICKNESS AND CONSISTENT CROSS-SECTIONAL AREA
A design is described herein for rings and for cutting rings for a device used in capsulotomy procedures. A set of ring dimensions can describe a desired height of a ring at each location of the ring. The set of ring dimensions is also associated with an intended wall thickness, and thus is associated with an intended cross-sectional area at each ring location. A wall thickness at each portion of a can vary from the intended wall thickness specified by the set of ring dimensions at various locations of the ring. At these locations, the height of the ring can be varied such that the resulting cross-sectional area of the ring at these locations is substantially similar to the intended cross-sectional area of the ring at the locations.
G05B 19/18 - Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
9.
Hydrodissection and posterior capsule opacification prevention during capsulotomy procedure
Embodiments of the invention provide hydrodissection and/or PCO prevention or reduction in a patient undergoing eye surgery. In one embodiment, the invention is a surgical device for cutting and excising a portion of tissue, for example in performing a lens capsulotomy. A capsulotomy tip is inserted into an eye through an incision in the surface of the eye. The capsulotomy tip includes a suction cup to provide suction to the lens capsule. Then suction is applied via the suction cup to secure the capsulotomy tip to the eye. In some embodiments, after the capsulotomy tip is secured to the lens capsule, a cutting element of the capsulotomy tip is used to cut a tissue of the eye. Fluid is pushed through the capsulotomy tip and the capsulotomy tip is removed from the eye. Moreover, disclosed is an intraocular lens (IOL) to be used in conjunction with the surgical device.
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A61F 9/008 - Methods or devices for eye surgery using laser
A61M 1/00 - Suction or pumping devices for medical purposesDevices for carrying-off, for treatment of, or for carrying-over, body-liquidsDrainage systems
A device is described herein for performing capsulotomies that improves temperature uniformity and current flow around a cutting element of the device. The device includes a series of features whose geometries help remove cold and/or hot spots from the cutting element while maintaining the mechanical strength of the cutting element. In an embodiment, a device includes a cutting element and one or more electrical leads for providing an electrical discharge to the cutting element. The device further includes wire tabs configured to conductively couple an electrical lead to cutting element. Each wire tab includes a central conductive path and one or more conductive shunt paths conductively separated by one or more slots. The device further includes anchor tabs that are each associated with a slot disposed along the circumference of the cutting element and positioned to at least partially separate an anchor tab from a portion of the cutting element.
A surgical system for performing a capsulotomy of a lens capsule of an eye includes an elastic ring, a suction cup, an interface, a converter, and a control console. The elastic ring includes a conductive surface. The interface may be coupled to an air port and/or a fluid line of a phacomachine. The converter detects a pulse of air from the phacomachine via the interface, and produce an electrical signal in response. Fluid received from the phacomachine is delivered into the suction cup. The system is configured to remove the fluid from the suction cup and between the suction cup and a surface of the eye to form a suction seal. The control console is configured to, in response to receiving the electrical signal, drive a series of electrical pulses through the conductive surface of the elastic ring, causing the elastic ring to perform a tissue cutting operation.
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
12.
Phacomachine air pulse conversion for capsulotomy device
A surgical system for performing a capsulotomy of a lens capsule of an eye includes an elastic ring, a suction cup, an interface, a converter, and a control console. The elastic ring includes a conductive surface. The interface may be coupled to an air port and/or a fluid line of a phacomachine. The converter detects a pulse of air from the phacomachine via the interface, and produce an electrical signal in response. Fluid received from the phacomachine is delivered into the suction cup. The system is configured to remove the fluid from the suction cup and between the suction cup and a surface of the eye to form a suction seal. The control console is configured to, in response to receiving the electrical signal, drive a series of electrical pulses through the conductive surface of the elastic ring, causing the elastic ring to perform a tissue cutting operation.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61B 17/00 - Surgical instruments, devices or methods
A61B 17/30 - Surgical pincettes, i.e. surgical tweezers
13.
Phacomachine irrigation and aspiration integration for capsulotomy device
A surgical system for performing a capsulotomy of a lens capsule of an eye includes an elastic ring, a suction cup, an interface, a converter, and a control console. The elastic ring includes a conductive surface. The interface may be coupled to an air port and/or a fluid line of a phacomachine. The converter detects a pulse of air from the phacomachine via the interface, and produce an electrical signal in response. Fluid received from the phacomachine is delivered into the suction cup. The system is configured to remove the fluid from the suction cup and between the suction cup and a surface of the eye to form a suction seal. The control console is configured to, in response to receiving the electrical signal, drive a series of electrical pulses through the conductive surface of the elastic ring, causing the elastic ring to perform a tissue cutting operation.
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61F 9/008 - Methods or devices for eye surgery using laser
A surgical device and procedure are provided for smoothly and easily accessing tissue to perform microsurgery, including a capsulotomy of a lens capsule of an eye. The device includes a handpiece with a tip for insertion into an incision in the cornea of the eye. A sliding element is disposed within the handpiece and a suction cup is mounted to the sliding element. The sliding element can be translated to move the suction cup into and out of the handpiece. A compression mechanism associated with the suction cup and the handpiece compresses the suction cup for deployment through the tip of the handpiece. The suction cup can expand inside the anterior chamber into a cutting position on the lens capsule. A cutting element mounted to the suction cup is used to cut a portion of the lens capsule and to remove the portion from the eye. The cutting element may be mounted to a cutting element support structure in a way that prevents heating of the device.
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
A surgical device and procedure are provided for performing microsurgery, including a capsulotomy of a lens capsule of an eye. The device has an elastically deformable cutting element mounted within an elastomeric suction cup. The suction cup is attached to an arm for manipulating the device. The device can be inserted into the anterior chamber of the eye, through a corneal incision, to cut a piece from the anterior portion of the lens capsule of the eye. The device is secured against the lens capsule using suction applied by one or more suction elements. The device is then removed from the eye, with the cut piece of membrane retained within the device by suction.
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A device is described herein for performing capsulotomies that improves suction uniformity and produces rolled capsulotomy edges. The device includes a suction cup that forms a tapered circumferential suction chamber which enables suction to be applied to a tissue in a first direction. The tapered circumferential suction chamber decreases in cross-sectional area from a proximal end of the device towards a distal end of the device. The device further includes a stem coupled to the suction cup to provide suction to the suction cup. The stem forms a neck that enables fluid flow to the suction cup in a direction substantially perpendicular to the first direction. The device further includes a cutting element configured to excise the tissue.
A device is described herein for performing capsulotomies that improves suction uniformity and produces rolled capsulotomy edges. The device includes a suction cup that forms a tapered circumferential suction chamber which enables suction to be applied to a tissue in a first direction. The tapered circumferential suction chamber decreases in cross-sectional area from a proximal end of the device towards a distal end of the device. The device further includes a stem coupled to the suction cup to provide suction to the suction cup. The stem forms a neck that enables fluid flow to the suction cup in a direction substantially perpendicular to the first direction. The device further includes a cutting element configured to excise the tissue.
A device is described herein for performing capsulotomies that improves temperature uniformity and current flow around a cutting element of the device. The device includes a series of features whose geometries help remove cold and/or hot spots from the cutting element while maintaining the mechanical strength of the cutting element. In an embodiment, a device includes a cutting element and one or more electrical leads for providing an electrical discharge to the cutting element. The device further includes wire tabs configured to conductively couple an electrical lead to cutting element. Each wire tab includes a central conductive path and one or more conductive shunt paths conductively separated by one or more slots. The device further includes anchor tabs that are each associated with a slot disposed along the circumference of the cutting element and positioned to at least partially separate an anchor tab from a portion of the cutting element.
A device is described herein for performing capsulotomies that improves temperature uniformity and current flow around a cutting element of the device. The device includes a series of features whose geometries help remove cold and/or hot spots from the cutting element while maintaining the mechanical strength of the cutting element. In an embodiment, a device includes a cutting element and one or more electrical leads for providing an electrical discharge to the cutting element. The device further includes wire tabs configured to conductively couple an electrical lead to cutting element. Each wire tab includes a central conductive path and one or more conductive shunt paths conductively separated by one or more slots. The device further includes anchor tabs that are each associated with a slot disposed along the circumference of the cutting element and positioned to at least partially separate an anchor tab from a portion of the cutting element.
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A surgical device and procedure are provided for smoothly and easily accessing tissue to perform microsurgery, including a capsulotomy of a lens capsule of an eye. The device includes a handpiece with a tip for insertion into an incision in the cornea of the eye. A sliding element is disposed within the handpiece and a suction cup is mounted to the sliding element. The sliding element can be translated to move the suction cup into and out of the handpiece. A compression mechanism associated with the suction cup and the handpiece compresses the suction cup for deployment through the tip of the handpiece. The suction cup can expand inside the anterior chamber into a cutting position on the lens capsule. A cutting element mounted to the suction cup is used to cut a portion of the lens capsule and to remove the portion from the eye. The cutting element may be mounted to a cutting element support structure in a way that prevents heating of the device.
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A surgical device is disclosed for cutting tissue, including for performing a capsulotomy of a lens capsule of an eye. This device includes a reversibly collapsible cutting element for cutting a portion of a capsule membrane of the eye. The cutting element includes an outer layer, an inner layer, and a bottom layer that has a higher electrical resistance than the electrical resistance of the outer layer and the inner layer. The bottom layer is configured to conduct an electrical current between the outer layer and the inner layer, which causes a temperature increase in the bottom layer for cutting tissue.
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A surgical device and procedure are provided for performing microsurgery, including a capsulotomy of a lens capsule of an eye. The device has an elastically deformable cutting element mounted within an elastomeric suction cup. The suction cup is attached to an arm for manipulating the device. The device can be inserted into the anterior chamber of the eye, through a corneal incision, to cut a piece from the anterior portion of the lens capsule of the eye. The device is secured against the lens capsule using suction applied by one or more suction elements. The device is then removed from the eye, with the cut piece of membrane retained within the device by suction.
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
Embodiments of the invention provide hydrodissection and/or PCO prevention or reduction in a patient undergoing eye surgery. In one embodiment, the invention is a surgical device for cutting and excising a portion of tissue, for example in performing a lens capsulotomy. A capsulotomy tip is inserted into an eye through an incision in the surface of the eye. The capsulotomy tip includes a suction cup to provide suction to the lens capsule. Then suction is applied via the suction cup to secure the capsulotomy tip to the eye. In some embodiments, after the capsulotomy tip is secured to the lens capsule, a cutting element of the capsulotomy tip is used to cut a tissue of the eye. Fluid is pushed through the capsulotomy tip and the capsulotomy tip is removed from the eye. Moreover, disclosed is an intraocular lens (IOL) to be used in conjunction with the surgical device.
A61F 9/008 - Methods or devices for eye surgery using laser
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A61M 1/00 - Suction or pumping devices for medical purposesDevices for carrying-off, for treatment of, or for carrying-over, body-liquidsDrainage systems
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A surgical device and procedure are provided for smoothly and easily accessing tissue to perform microsurgery, including a capsulotomy of a lens capsule of an eye. The device includes a handpiece with a tip for insertion into an incision in the cornea of the eye. A sliding element is disposed within the handpiece and a suction cup is mounted to the sliding element. The sliding element can be translated to move the suction cup into and out of the handpiece. A compression mechanism associated with the suction cup and the handpiece compresses the suction cup for deployment through the tip of the handpiece. The suction cup can expand inside the anterior chamber into a cutting position on the lens capsule. A cutting element mounted to the suction cup is used to cut a portion of the lens capsule and to remove the portion from the eye. The cutting element may be mounted to a cutting element support structure in a way that prevents heating of the device.
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
27.
Ophthalmic surgical device for accessing tissue and for performing a capsulotomy
A surgical device and procedure are provided for smoothly and easily accessing tissue to perform microsurgery, including a capsulotomy of a lens capsule of an eye. The device includes a handpiece with a tip for insertion into an incision in the cornea of the eye. A sliding element is disposed within the handpiece and a suction cup is mounted to the sliding element. The sliding element can be translated to move the suction cup into and out of the handpiece. A compression mechanism associated with the suction cup and the handpiece compresses the suction cup for deployment through the tip of the handpiece. The suction cup can expand inside the anterior chamber into a cutting position on the lens capsule. A cutting element mounted to the suction cup is used to cut a portion of the lens capsule and to remove the portion from the eye.
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
MEDICAL DEVICES, NAMELY SURGICAL APPARATUS FOR PERFORMING CATARACT REMOVAL SURGERY CONSISTING OF CAPSULOTOMY; MEDICAL DEVICES, NAMELY SURGICAL APPARATUS FOR PERFORMING CAPSULOTOMY USING LOW ENERGY PULSES; CAPSULOTOMY KITS.
Medical devices, namely, surgical apparatus for performing cataract removal surgery, namely, for performing capsulotomy; medical devices, namely, surgical apparatus for performing capsulotomy using low energy pulses; capsulotomy kits comprised of surgical devices for performing capsulotomies and surgical devices that use low energy pulses to perform a capsulotomy
30.
Ophthalmic surgical device for accessing tissue and for performing a capsulotomy
A surgical device and procedure are provided for smoothly and easily accessing tissue to perform microsurgery, including a capsulotomy of a lens capsule of an eye. The device includes a handpiece with a tip for insertion into an incision in the cornea of the eye. A sliding element is disposed within the handpiece and a suction cup is mounted to the sliding element. The sliding element can be translated to move the suction cup into and out of the handpiece. A compression mechanism associated with the suction cup and the handpiece compresses the suction cup for deployment through the tip of the handpiece. The suction cup can expand inside the anterior chamber into a cutting position on the lens capsule. A cutting element mounted to the suction cup is used to cut a portion of the lens capsule and to remove the portion from the eye.
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A surgical device and procedure are provided for performing microsurgery, including a capsulotomy of a lens capsule of an eye. The device has an elastically deformable cutting element mounted within an elastomeric suction cup. The suction cup is attached to an arm for manipulating the device. The device can be inserted into the anterior chamber of the eye, through a corneal incision, to cut a piece from the anterior portion of the lens capsule of the eye. The device is secured against the lens capsule using suction applied by one or more suction elements. The device is then removed from the eye, with the cut piece of membrane retained within the device by suction.
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A surgical device and procedure are provided for smoothly and easily accessing tissue to perform microsurgery, including a capsulotomy of a lens capsule of an eye. The device includes a handpiece with a tip for insertion into an incision in the cornea of the eye. A sliding element is disposed within the handpiece and a suction cup is mounted to the sliding element. The sliding element can be translated to move the suction cup into and out of the handpiece. A compression mechanism associated with the suction cup and the handpiece compresses the suction cup for deployment through the tip of the handpiece. The suction cup can expand inside the anterior chamber into a cutting position on the lens capsule. A cutting element mounted to the suction cup is used to cut a portion of the lens capsule and to remove the portion from the eye.
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A surgical device and procedure are provided for performing microsurgery, including a capsulotomy of a lens capsule of an eye. The device has an elastically deformable cutting element mounted within an elastomeric suction cup. The suction cup is attached to an arm for manipulating the device. The device can be inserted into the anterior chamber of the eye, through a corneal incision, to cut a piece from the anterior portion of the lens capsule of the eye. The device is secured against the lens capsule using suction applied by one or more suction elements. The device is then removed from the eye, with the cut piece of membrane retained within the device by suction.
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A61F 9/008 - Methods or devices for eye surgery using laser
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A surgical device is disclosed for cutting tissue, including for performing a capsulotomy of a lens capsule of an eye. This device includes a reversibly collapsible cutting element for cutting a portion of a capsule membrane of the eye. The cutting element includes an outer layer, an inner layer, and a bottom layer that has a higher electrical resistance than the electrical resistance of the outer layer and the inner layer. The bottom layer is configured to conduct an electrical current between the outer layer and the inner layer, which causes a temperature increase in the bottom layer for cutting tissue.
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A cartridge of a surgical device is disclosed that includes a capsulotomy device and a shell structure. The capsulotomy device includes a suction cup, a chamber configured to provide suction to the suction cup, and a cutting element that can be put into contact with a lens capsule of an eye to excise a portion of tissue of the lens capsule. Both the suction cup and cutting element are collapsible. The shell structure is configured for housing the capsulotomy device. The housing of the shell structure can contain the suction cup, the chamber, and the cutting element of the capsulotomy device to protect the device before it is used in performing a capsulotomy.
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A surgical device and procedure for accessing tissue to perform microsurgery, including a capsulotomy of a lens capsule of an eye. The device includes a handpiece with a tip for insertion into an incision. A sliding element is disposed within the handpiece and a suction cup is mounted to the sliding element. The sliding element can be translated to move the suction cup into and out of the handpiece. A compression mechanism associated with the suction cup and the handpiece compresses the suction cup for deployment through the tip of the handpiece. The suction cup can expand inside the anterior chamber into a cutting position. A cutting element mounted to the suction cup is used to cut a portion and to remove the portion. The cutting element may be mounted to a cutting element support structure in a way that prevents heating of the device.
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
37.
Capsulotomy device with suction cup compression chamber
A surgical device and procedure are provided for smoothly and easily accessing tissue to perform microsurgery, including a capsulotomy of a lens capsule of an eye. The device includes a handpiece with a tip for insertion into an incision in the cornea of the eye. A sliding element is disposed within the handpiece and a suction cup is mounted to the sliding element. The sliding element can be translated to move the suction cup into and out of the handpiece. A compression mechanism associated with the suction cup and the handpiece compresses the suction cup for deployment through the tip of the handpiece. The suction cup can expand inside the anterior chamber into a cutting position on the lens capsule. A cutting element mounted to the suction cup is used to cut a portion of the lens capsule and to remove the portion from the eye.
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
A surgical device and procedure are provided for performing microsurgery, including a capsulotomy of a lens capsule of an eye. The device has an elastically deformable cutting element mounted within an elastomeric suction cup. The suction cup is attached to an arm for manipulating the device. The device can be inserted into the anterior chamber of the eye, through a corneal incision, to cut a piece from the anterior portion of the lens capsule of the eye. The device is secured against the lens capsule using suction applied by one or more suction elements. The device is then removed from the eye, with the cut piece of membrane retained within the device by suction.
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A61F 9/008 - Methods or devices for eye surgery using laser
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
39.
Ophthalmic surgical device for accessing tissue and for performing a capsulotomy
A surgical device and procedure are provided for smoothly and easily accessing tissue to perform microsurgery, including a capsulotomy of a lens capsule of an eye. The device includes a handpiece with a tip for insertion into an incision in the cornea of the eye. A sliding element is disposed within the handpiece and a suction cup is mounted to the sliding element. The sliding element can be translated to move the suction cup into and out of the handpiece. A compression mechanism associated with the suction cup and the handpiece compresses the suction cup for deployment through the tip of the handpiece. The suction cup can expand inside the anterior chamber into a cutting position on the lens capsule. A cutting element mounted to the suction cup is used to cut a portion of the lens capsule and to remove the portion from the eye.
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A surgical device and procedure are provided for performing microsurgery, including a capsulotomy of a lens capsule of an eye. The device has an elastically deformable cutting element mounted within an elastomeric suction cup. The suction cup is attached to an arm for manipulating the device. The device can be inserted into the anterior chamber of the eye, through a corneal incision, to cut a piece from the anterior portion of the lens capsule of the eye. The device is secured against the lens capsule using suction applied by one or more suction elements. The device is then removed from the eye, with the cut piece of membrane retained within the device by suction.