A powder metal composition providing a powder metal material to be compacted, sintered, and heat treated to be comparable to wrought 6013 aluminum alloy. The powder metal composition includes an aluminum base powder metal, an aluminum-silicon powder metal, an aluminum-copper powder metal, and an elemental magnesium powder metal. A weight percent of silicon in the powder metal composition is in a range of 0.6 to 1.0 wt % of the powder metal composition, a weight percent of copper in the powder metal composition is in a range of 0.7 to 1.1 wt % of the powder metal composition, and a weight percent of magnesium in the powder metal composition is in a range of 0.8 to 1.2 wt % of the powder metal composition. This powder metal is compactable to form a green compact which is further sinterable and heat treatable to provide a powder metal composition comparable to wrought 6013 aluminum alloy.
B22F 1/142 - Thermal or thermo-mechanical treatment
C22F 1/047 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
2.
Powder Metallurgy Counterpart to Wrought Aluminum Alloy 6063
A powder metal composition for a powder metal material to be compacted, sintered, and heat treated is comparable to wrought 6063 aluminum alloy. The powder metal composition consists essentially of an aluminum powder metal with no pre-alloyed alloying additions, an aluminum-silicon powder metal, an elemental magnesium powder metal, optionally an elemental tin powder metal, and optionally a ceramic addition (which is not included when calculating the weight percentages of the alloying elements). A weight percent of silicon is in a range of 0.2 to 0.6 wt % of the powder metal composition, of magnesium is in a range of 0.5 to 0.9 wt %, and of tin is in a range of 0.0 to 1.0 wt %. This powder metal is compactable to form a green compact which is further sinterable and heat treatable to provide a powder metal composition comparable to a wrought 6063 aluminum alloy and which offers exceptional thermal conductivity.
A method of forming a sintered and swaged powder metal component to be comparable as a substitute for wrought 6013 aluminium alloy. A powder metal composition is compacted to form a green compact in which the powder metal composition includes an aluminum base powder metal, an aluminum-silicon powder metal, an aluminum-copper powder metal, and an elemental magnesium powder metal. The green compact is sintered to form a sintered part. The sintered part is swaged to form a sintered and swaged powder metal component. This method can produce a sintered and swaged powder metal component that after a T8 treatment has mechanical properties approaching that of wrought 6013 aluminum alloy.
B22F 3/17 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by forging
B22F 3/24 - After-treatment of workpieces or articles
4.
POWDER METALLURGY COUNTERPART TO WROUGHT ALUMINUM ALLOY 6063
A powder metal composition for a powder metal material to be compacted, sintered, and heat treated is comparable to wrought 6063 aluminum alloy. The powder metal composition consists essentially of an aluminum powder metal with no pre- alloyed alloying additions, an aluminum-silicon powder metal, an elemental magnesium powder metal, optionally an elemental tin powder metal, and optionally a ceramic addition (which is not included when calculating the weight percentages of the alloying elements). A weight percent of silicon is in a range of 0.2 to 0.6 wt% of the powder metal composition, of magnesium is in a range of 0.5 to 0.9 wt%, and of tin is in a range of 0.0 to 1.0 wt%. This powder metal is compactable to form a green compact which is further sinterable and heat treatable to provide a powder metal composition comparable to a wrought 6063 aluminum alloy and which offers exceptional thermal conductivity.
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 21/08 - Alloys based on aluminium with magnesium as the next major constituent with silicon
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
5.
POWDER METALLURGY COUNTERPART TO WROUGHT ALUMINUM ALLOY 6063
A powder metal composition for a powder metal material to be compacted, sintered, and heat treated is comparable to wrought 6063 aluminum alloy. The powder metal composition consists essentially of an aluminum powder metal with no pre- alloyed alloying additions, an aluminum-silicon powder metal, an elemental magnesium powder metal, optionally an elemental tin powder metal, and optionally a ceramic addition (which is not included when calculating the weight percentages of the alloying elements). A weight percent of silicon is in a range of 0.2 to 0.6 wt% of the powder metal composition, of magnesium is in a range of 0.5 to 0.9 wt%, and of tin is in a range of 0.0 to 1.0 wt%. This powder metal is compactable to form a green compact which is further sinterable and heat treatable to provide a powder metal composition comparable to a wrought 6063 aluminum alloy and which offers exceptional thermal conductivity.
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 21/08 - Alloys based on aluminium with magnesium as the next major constituent with silicon
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
A powder metal composition providing a powder metal material to be compacted, sintered, and heat treated to be comparable to wrought 6013 aluminum alloy. The powder metal composition includes an aluminum base powder metal, an aluminum-silicon powder metal, an aluminum-copper powder metal, and an elemental magnesium powder metal. A weight percent of silicon in the powder metal composition is in a range of 0.6 to 1.0 wt% of the powder metal composition, a weight percent of copper in the powder metal composition is in a range of 0.7 to 1.1 wt% of the powder metal composition, and a weight percent of magnesium in the powder metal composition is in a range of 0.8 to 1.2 wt% of the powder metal composition. This powder metal is compactable to form a green compact which is further sinterable and heat treatable to provide a powder metal composition comparable to wrought 6013 aluminum alloy.
B22F 3/24 - After-treatment of workpieces or articles
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 21/02 - Alloys based on aluminium with silicon as the next major constituent
C22C 21/08 - Alloys based on aluminium with magnesium as the next major constituent with silicon
C22C 21/14 - Alloys based on aluminium with copper as the next major constituent with silicon
C22C 21/16 - Alloys based on aluminium with copper as the next major constituent with magnesium
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
C22F 1/05 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
A powder metal composition providing a powder metal material to be compacted, sintered, and heat treated to be comparable to wrought 6013 aluminum alloy. The powder metal composition includes an aluminum base powder metal, an aluminum-silicon powder metal, an aluminum-copper powder metal, and an elemental magnesium powder metal. A weight percent of silicon in the powder metal composition is in a range of 0.6 to 1.0 wt% of the powder metal composition, a weight percent of copper in the powder metal composition is in a range of 0.7 to 1.1 wt% of the powder metal composition, and a weight percent of magnesium in the powder metal composition is in a range of 0.8 to 1.2 wt% of the powder metal composition. This powder metal is compactable to form a green compact which is further sinterable and heat treatable to provide a powder metal composition comparable to wrought 6013 aluminum alloy.
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 21/02 - Alloys based on aluminium with silicon as the next major constituent
C22C 21/08 - Alloys based on aluminium with magnesium as the next major constituent with silicon
C22C 21/14 - Alloys based on aluminium with copper as the next major constituent with silicon
C22C 21/16 - Alloys based on aluminium with copper as the next major constituent with magnesium
C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
C22F 1/05 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
B22F 3/24 - After-treatment of workpieces or articles
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
8.
HOT DEFORMATION PROCESSING OF A PRECIPITATION HARDENING POWDER METAL ALLOY
A method of forming a sintered and swaged powder metal component to be comparable as a substitute for wrought 6013 aluminum alloy. A powder metal composition is compacted to form a green compact in which the powder metal composition includes an aluminum base powder metal, an aluminum-silicon powder metal, an aluminum-copper powder metal, and an elemental magnesium powder metal. The green compact is sintered to form a sintered part. The sintered part is swaged to form a sintered and swaged powder metal component. This method can produce a sintered and swaged powder metal component that after a T8 treatment has mechanical properties approaching that of wrought 6013 aluminum alloy.
B22F 3/24 - After-treatment of workpieces or articles
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 21/02 - Alloys based on aluminium with silicon as the next major constituent
C22C 21/08 - Alloys based on aluminium with magnesium as the next major constituent with silicon
C22C 21/14 - Alloys based on aluminium with copper as the next major constituent with silicon
C22C 21/16 - Alloys based on aluminium with copper as the next major constituent with magnesium
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
C22F 1/05 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
9.
HOT DEFORMATION PROCESSING OF A PRECIPITATION HARDENING POWDER METAL ALLOY
A method of forming a sintered and swaged powder metal component to be comparable as a substitute for wrought 6013 aluminum alloy. A powder metal composition is compacted to form a green compact in which the powder metal composition includes an aluminum base powder metal, an aluminum-silicon powder metal, an aluminum-copper powder metal, and an elemental magnesium powder metal. The green compact is sintered to form a sintered part. The sintered part is swaged to form a sintered and swaged powder metal component. This method can produce a sintered and swaged powder metal component that after a T8 treatment has mechanical properties approaching that of wrought 6013 aluminum alloy.
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 21/02 - Alloys based on aluminium with silicon as the next major constituent
C22C 21/08 - Alloys based on aluminium with magnesium as the next major constituent with silicon
C22C 21/14 - Alloys based on aluminium with copper as the next major constituent with silicon
C22C 21/16 - Alloys based on aluminium with copper as the next major constituent with magnesium
C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
C22F 1/05 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
B22F 3/24 - After-treatment of workpieces or articles
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
10.
POWDER METAL COMPOSITION WITH ALUMINUM NITRIDE MMC
A powder metal composition comprising an aluminum (Al) powder metal, an aluminum-copper (Al-Cu) powder metal, a magnesium (Mg) powder metal, a tin ( Sn) powder metal, an aluminum-silicon (Al-Si) powder metal, and aluminum nitride (AIN) as a metal-matrix composite additive. In at least some forms, the aluminum (Al) powder metal includes a portion which is fine aluminum powder metal. This powder metal composition is compressible to form a green powder metal compact which may be sintered to form a sintered part which has a composition and properties approximating that of a 6061 aluminum alloy product.
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 21/08 - Alloys based on aluminium with magnesium as the next major constituent with silicon
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
11.
POWDER METAL COMPOSITION WITH ALUMINUM NITRIDE MMC
A powder metal composition comprising an aluminum (Al) powder metal, an aluminum-copper (Al-Cu) powder metal, a magnesium (Mg) powder metal, a tin ( Sn) powder metal, an aluminum-silicon (Al-Si) powder metal, and aluminum nitride (AIN) as a metal-matrix composite additive. In at least some forms, the aluminum (Al) powder metal includes a portion which is fine aluminum powder metal. This powder metal composition is compressible to form a green powder metal compact which may be sintered to form a sintered part which has a composition and properties approximating that of a 6061 aluminum alloy product.
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 21/08 - Alloys based on aluminium with magnesium as the next major constituent with silicon
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
A method of carburizing a powder metal part involving more than one carburizing step. In a pre-forging carburizing step, a powder metal part that is less than fully dense is carburized to establish a pre-forging carburization profile. After the pre-forging carburizing step, the powder metal part is forged so that the powder metal part is increased in density and the pre-forging carburization profile is transformed into an as-forged carburization profile. In a post-forging carburizing step following the forging step, the powder metal part is again carburized, thereby resulting in both further diffusion of carbon from the as-forged carburization profile into the powder metal part and further introduction of carbon into the powder metal part at a surface of the powder metal part.
B22F 3/17 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by forging
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
13.
Powder metal alloy composition for sintered powder metal insert for aluminum casting
A powder metal alloy composition is used in the production of a sintered powder metal insert for casting into an aluminum casting. The powder metal alloy composition includes an iron powder metal base, copper such that the copper is 3.5 weight percent or more of the powder metal alloy composition, and carbon in an amount of 0.1 to 1.0 weight percent of the powder metal alloy composition. Upon compacting and sintering the powder metal alloy composition to form the sintered powder metal insert, the sintered powder metal insert has a copper gradient that provides a higher concentration of copper on the surface of the sintered powder metal insert than in a center of the grains of the sintered powder metal insert. The higher concentration of copper at the surface of the insert enables a strong metallurgical bond to be formed with the aluminum casting during casting.
B22D 19/00 - Casting in, on, or around, objects which form part of the product
B22D 19/04 - Casting in, on, or around, objects which form part of the product for joining parts
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
B22F 7/08 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
C22C 21/14 - Alloys based on aluminium with copper as the next major constituent with silicon
C22C 21/16 - Alloys based on aluminium with copper as the next major constituent with magnesium
C22C 21/18 - Alloys based on aluminium with copper as the next major constituent with zinc
C22C 38/16 - Ferrous alloys, e.g. steel alloys containing copper
A method of making a powder metal bearing support insert includes filling a tool and die set with a powder metal. A compact is compacted from the powder metal using the tool and die set in which the compact includes a body having a pair of opposing ends on lateral sides thereof, a bearing-receiving surface positioned on a side of the body between the pair of opposing ends in which the bearing-receiving surface is for reception of a bearing therein, and a pair of holes extending through the body wherein each of the pair of holes are formed by sets of adjacent interdigitated slots having regions that abut one another to form a connected passageway therethrough that define the respective hole. The compact is sintered to form the powder metal bearing support insert. The powder metal bearing support insert may be cast into an engine component.
F16C 33/14 - Special methods of manufactureRunning-in
B22D 19/00 - Casting in, on, or around, objects which form part of the product
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
A method of carburizing a powder metal part involving more than one carburizing step. In a pre-forging carburizing step, a powder metal part that is less than fully dense is carburized to establish a pre-forging carburization profile. After the pre- forging carburizing step, the powder metal part is forged so that the powder metal part is increased in density and the pre-forging carburization profile is transformed into an as-forged carburization profile. In a post-forging carburizing step following the forging step, the powder metal part is again carburized, thereby resulting in both further diffusion of carbon from the as-forged carburization profile into the powder metal part and further introduction of carbon into the powder metal part at a surface of the powder metal part.
B22F 3/17 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by forging
B22F 3/24 - After-treatment of workpieces or articles
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
A powder metal bearing support insert for casting into an engine component includes a pair of holes formed by interdigitated slots during a powder metal compaction process. Since they are formed by interdigitated slots, this pair of holes may receive the cast material therein during the casting step. Among other things, the cast material in these holes may be drilled or machined using tools graded to work the material of the casting in contrast to the material of the insert.
F16C 35/02 - Rigid support of bearing unitsHousings, e.g. caps, covers in the case of sliding-contact bearings
F16C 33/14 - Special methods of manufactureRunning-in
B22D 19/00 - Casting in, on, or around, objects which form part of the product
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
17.
Rotor and method of manufacturing rotor with equalized surface areas for grinding
A rotor for a variable valve timing engine is disclosed in which the opposing planar surface(s) of the rotor have one or more recesses formed therein in order to balance, equilibrate, or equalize the planar surface areas on the opposing surfaces. Among other things, this can improve the accuracy and efficiency with which the rotor is ground during a related method of manufacturing the rotor.
F01L 1/34 - Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening
B22F 3/24 - After-treatment of workpieces or articles
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
F01L 1/344 - Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
A differential assembly includes one or more NVH-modifying elements that alter and/or reduce at least one of a noise, vibration, and harshness emitted from the differential assembly. The NVH-modifying element(s) are placed in engagement with the side gears of the differential assembly to modify and/or reduce the NVH of the differential assembly.
A method of manufacturing a sized powder metal component having improved fatigue strength. The method includes the sequential steps of solutionizing a sintered powder metal component and quenching the sintered powder metal component, sizing the sintered powder metal component to form a sized powder metal component, re-solutionizing the sized powder metal component, and ageing the sized powder metal component. The sized powder metal component made by this method, in which the component is re-solutionized between sizing before ageing, can exhibit exceptional improvements in fatigue strength compared to components prepared similarly but that are not re-solutionized.
C22F 1/04 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
20.
METHOD FOR IMPROVING FATIGUE STRENGTH ON SIZED ALUMINUM POWDER METAL COMPONENTS
A method of manufacturing a sized powder metal component having improved fatigue strength. The method includes the sequential steps of solutionizing a sintered powder metal component and quenching the sintered powder metal component, sizing the sintered powder metal component to form a sized powder metal component, re-solutionizing the sized powder metal component, and ageing the sized powder metal component. The sized powder metal component made by this method, in which the component is re-solutionized between sizing before ageing, can exhibit exceptional improvements in fatigue strength compared to components prepared similarly but that are not re-solutionized.
B22F 3/16 - Both compacting and sintering in successive or repeated steps
B22F 3/24 - After-treatment of workpieces or articles
C22F 1/04 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
21.
POWDER METAL ALLOY COMPOSITION FOR SINTERED POWDER METAL INSERT FOR ALUMINUM CASTING
A powder metal alloy composition is used in the production of a sintered powder metal insert for casting into an aluminum casting. The powder metal alloy composition includes an iron powder metal base, copper such that the copper is 3.5 weight percent or more of the powder metal alloy composition, and carbon in an amount of 0.1 to 1.0 weight percent of the powder metal alloy composition. Upon compacting and sintering the powder metal alloy composition to form the sintered powder metal insert, the sintered powder metal insert has a copper gradient that provides a higher concentration of copper on the surface of the sintered powder metal insert than in a center of the grains of the sintered powder metal insert. The higher concentration of copper at the surface of the insert enables a strong metallurgical bond to be formed with the aluminum casting during casting.
F16C 33/14 - Special methods of manufactureRunning-in
B22F 7/08 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
22.
Aluminum alloy powder formulations with silicon additions for mechanical property improvements
The mechanical properties and thermal resistance of a sintered component made from an Al—Cu—Mg—Sn alloy powder metal mixture can be improved by doping the Al—Cu—Mg—Sn alloy powder metal mixture with a silicon addition. Silicon is added as a constituent to the Al—Cu—Mg—Sn alloy powder metal mixture. The Al—Cu—Mg—Sn alloy powder metal mixture is compacted to form a preform and the preform is sintered to form the sintered component.
A method of sinter fitting a powder metal compact around a core forms a composite component. By exploiting the shrinkage associated with the sintering of a powder metal compact, a sintered powder metal section may be dimensionally shrunk onto a core to create a mechanical interference fit between a core section and a sintered powder metal section. This method may be used to join materials such as aluminum and steel together, which traditionally have been difficult to join to one another.
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
B22F 7/08 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
A powder metal bearing support insert for casting into an engine component includes a pair of holes formed by interdigitated slots during a powder metal compaction process. Since they are formed by interdigitated slots, this pair of holes may receive the cast material therein during the casting step. Among other things, the cast material in these holes may be drilled or machined using tools graded to work the material of the casting in contrast to the material of the insert.
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
B22F 7/08 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
B22D 19/16 - Casting in, on, or around, objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
25.
ROTOR AND METHOD OF MANUFACTURING ROTOR WITH EQUALIZED SURFACE AREAS FOR GRINDING
A rotor for a variable valve timing engine is disclosed in which the opposing planar surface (s) of the rotor have one or more recesses formed therein in order to balance, equilibrate, or equalize the planar surface areas on the opposing surfaces. Among other things, this can improve the accuracy and efficiency with which the rotor is ground during a related method of manufacturing the rotor.
F01L 1/344 - Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
A differential assembly includes one or more NVH-modifying elements that alter and/or reduce at least one of a noise, vibration, and harshness emitted from the differential assembly. The NVH-modifying element (s) are placed in engagement with the side gears of the differential assembly to modify and/or reduce the NVH of the differential assembly.
A method includes the sequential steps of compacting a powder metal in a tool and die set using a compaction press to form a powder metal compact, ejecting the powder metal compact from the tool and die set, positioning the powder metal compact relative to another part, and cooling the powder metal compact. When the powder metal is compacted, a temperature of the powder metal used to form the powder metal compact increases relative to ambient temperature due to deformation of the powder metal during compacting. After ejection and while the powder metal compact is still above ambient temperature, the compact is positioned relative to the other part. Then, upon the cooling of the powder metal compact, the powder metal compact dimensionally shrinks to form an interference fit between the powder metal compact and the other part thereby forming the composite component, which may be subsequently sintered.
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
A forged composite inner race for a constant velocity joint is forged from a composite preform compact including a first powder metal material and a second powder metal material. The forged composite inner race includes a plurality of ball tracks formed on an outer section of the forged composite inner race with corresponding lands between adjacent ball tracks and an axially-extending splined opening formed in an inner section of the forged composite inner race. The outer section comprises the first powder metal material in a higher concentration than the second powder metal material and the inner section comprises the second powder metal material in a higher concentration than the first powder metal material.
F16H 55/06 - Use of materialsUse of treatments of toothed members or worms to affect their intrinsic material properties
B21K 1/30 - Making machine elements wheelsMaking machine elements discs with gear-teeth
B22F 3/17 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by forging
B22F 7/02 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite layers
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
F16D 3/223 - Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
29.
Aluminum alloy powder formulations with silicon additions for mechanical property improvements
An improved aluminum alloy powder metal includes silicon additions. When this improved powder metal with silicon additions is sintered to form a sintered component, the resultant component exhibits many improved mechanical strength properties and improved thermal resistance.
A method includes the sequential steps of compacting a powder metal in a tool and die set using a compaction press to form a powder metal compact, ejecting the powder metal compact from the tool and die set, positioning the powder metal compact relative to another part, and cooling the powder metal compact. When the powder metal is compacted, a temperature of the powder metal used to form the powder metal compact increases relative to ambient temperature due to deformation of the powder metal during compacting. After ejection and while the powder metal compact is still above ambient temperature, the compact is positioned relative to the other part. Then, upon the cooling of the powder metal compact, the powder metal compact dimensionally shrinks to form an interference fit between the powder metal compact and the other part thereby forming the composite component, which may be subsequently sintered.
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
A component (10) is adapted for contact with a mating component (50) during attachment of the components to one another to form a related assembly in which a deformable pad (26) or pads improve stress distribution. The component includes a body having an interface surface in which the body is adapted to be contacted with the mating component at the interface surface of the body. One or more deformable pads are formed in the interface surface. Each deformable pad has a top surface that is offset outwardly from the interface surface relative to the body and a groove surrounding the deformable pad that is offset inwardly from the interface surface relative to the body.
An improved planetary gear carrier assembly is disclosed including a carrier and a ring. The carrier has a hub extending in an axial direction. The hub has splines on a radially-outward facing surface that extend in an axial direction and further has a first set of groove sections on the radially-outward facing surface in which the first set of groove sections extends circumferentially around the hub and through the splines. The ring is received around the hub of the carrier and has splines on a radially-inward facing surface. The splines in the ring are received in the first set of groove sections by axially nesting the splines of the carrier and ring into one another and then angularly rotating the ring relative to the carrier. With the splines of the ring twisted in the groove sections of the carrier, the ring can be axially restricted relative to the carrier.
F16H 57/08 - General details of gearing of gearings with members having orbital motion
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
F16B 21/18 - Means without screw-thread for preventing relative axial movement of a pin, spigot, shaft, or the like and a member surrounding itStud-and-socket releasable fastenings without screw-thread by separate parts with grooves or notches in the pin or shaft with circlips or like resilient retaining devicesMeans without screw-thread for preventing relative axial movement of a pin, spigot, shaft, or the like and a member surrounding itStud-and-socket releasable fastenings without screw-thread by separate parts with grooves or notches in the pin or shaft Details
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
33.
Method of producing composite component having brass or bronze using sinter fit
F16C 33/14 - Special methods of manufactureRunning-in
F16C 33/12 - Structural compositionUse of special materials or surface treatments, e.g. for rust-proofing
C22C 9/01 - Alloys based on copper with aluminium as the next major constituent
B32B 15/01 - Layered products essentially comprising metal all layers being exclusively metallic
B22F 7/04 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite layers with one or more layers not made from powder, e.g. made from solid metal
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
B22F 7/08 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
C21D 1/18 - HardeningQuenching with or without subsequent tempering
C22C 9/04 - Alloys based on copper with zinc as the next major constituent
C22C 9/02 - Alloys based on copper with tin as the next major constituent
A method of sinter fitting a powder metal compact around a core forms a composite component. By exploiting the shrinkage associated with the sintering of a powder metal compact, a sintered powder metal section may be dimensionally shrunk onto a core to create a mechanical interference fit between a core section and a sintered powder metal section. This method may be used to join materials such as aluminum and steel together, which traditionally have been difficult to join to one another.
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
B22F 7/08 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
F16C 33/14 - Special methods of manufactureRunning-in
A bearing cap in which each foot includes a protrusion formed thereon that is generally linear having opposing sides in which each of these opposing sides support a plurality of crush ribs.
A method of manufacturing a machining tool in which an insert holder comprises a first surface, a second surface opposite the first surface, and a first insert tip slot extending between the first surface and the second surface. The first insert tip slot is configured so as to be compressed and densified to support a first insert tip. The insert holder further includes elevated projections extending from the first and second surfaces proximate the first insert tip slot.
B23P 15/34 - Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools milling cutters
B23B 27/14 - Cutting tools of which the bits or tips are of special material
37.
Planetary gear carrier joint for precision re-assembly and torque transmission
A planetary gear carrier has a drum cover and drum hub that make up a drum of the carrier and a carrier plate spaced from the drum cover defining a space in which the planetary gears reside, The drum cover, drum hub and carrier plate are joined by keys that are formed integrally with at least one of them that mate with surfaces of the other parts for precise assembly and re-assembly, and windows are defined through sets of spline teeth of the dram cover and drum hub through which planetary gears may be inserted for assembly to the carrier while the drum cover, drum hub and carrier plate are assembled to one another.
An improved aluminum alloy powder metal includes silicon additions. When this improved powder metal with silicon additions is sintered to form a sintered component, the resultant component exhibits many improved mechanical strength properties and improved thermal resistance.
B22F 9/04 - Making metallic powder or suspensions thereofApparatus or devices specially adapted therefor using physical processes starting from solid material, e.g. by crushing, grinding or milling
39.
ALUMINUM ALLOY POWDER FORMULATIONS WITH SILICON ADDITIONS FOR MECHANICAL PROPERTY IMPROVEMENTS
An improved aluminum alloy powder metal includes silicon additions. When this improved powder metal with silicon additions is sintered to form a sintered component, the resultant component exhibits many improved mechanical strength properties and improved thermal resistance.
An assembly comprising: a powder metal outer part (22) having a radially inward facing cylindrical surface (54) with a plurality of facets (52) formed thereon that, in an alternating fashion, extend in an axial direction from an axial side of the powder metal outer part toward an opposite axial side of the powder metal outer part to a position between the opposing axial sides of the powder metal outer part; a powder metal inner part (20) having a radially outward facing cylindrical surface with a plurality of facets formed thereon that, in an alternating fashion, extend in an axial direction from an axial side of the powder metal inner part toward an opposite axial side of the powder metal inner part to a position between the opposing axial sides of the powder metal inner part; and an intermediate component (26) disposed between the cylindrical surfaces of the powder metal outer part and the powder metal inner part that connects the powder metal outer part and the powder metal inner part together.
F16F 15/14 - Suppression of vibrations in rotating systems by making use of members moving with the system using freely-swinging masses rotating with the system
B22F 7/08 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
F16F 15/126 - Plastics springs, e.g. made of rubber consisting of at least one annular element surrounding the axis of rotation
41.
SINTERED POWDER METAL PART HAVING RADIALLY-EXTENDING SPACED OPENINGS AND METHOD OF MAKING THEREOF
A sintered powder metal part and a related method of making the part are disclosed. The sintered powder metal part, which is formed from a compacted and sintered powder metal, includes a hub having a radially-outwardly facing surface and a radially-inward facing surface. A toothed profile is formed in one of the radially-outwardly and radially-inward facing surfaces of the hub. One or more grooves are machined into the other of the surfaces of the hub such that the toothed profile and the one or more grooves are on oppositely-facing radial sides of the hub. The groove or grooves intersect with at least some of the tooth roots of the toothed profile to form a plurality of radially-extending spaced openings through the hub.
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
42.
PLANETARY GEAR CARRIER ASSEMBLY AND RELATED METHOD OF MAKING
An improved planetary gear carrier assembly is disclosed including a carrier and a ring. The carrier has a hub extending in an axial direction. The hub has splines on a radially-outward facing surface that extend in an axial direction and further has a first set of groove sections on the radially-outward facing surface in which the first set of groove sections extends circumferentially around the hub and through the splines. The ring is received around the hub of the carrier and has splines on a radially-inward facing surface. The splines in the ring are received in the first set of groove sections by axially nesting the splines of the carrier and ring into one another and then angularly rotating the ring relative to the carrier. With the splines of the ring twisted in the groove sections of the carrier, the ring can be axially restricted relative to the carrier.
A bearing cap (10) in which each foot includes an elongated protrusion (36) formed thereon positioned between the bolt hole and a side of said foot, with its major axis parallel to the axis of the bore partially defined by the bearing cap and includes ribs on its side surfaces that are perpendicular to its major axis.
A brazed part includes two or more components that are brazed together and has related method of making. Using a method of locating parts relative to one another, an inter-component gap between the components may be formed. Subsequently, during brazing, flow control features formed along the inter-component gap may then be used to assist in the retention of the braze material between the components during brazing.
A compression limiter is disclosed that comprises an upper surface and a lower surface. The compression limiter further comprises an inner surface that defines a passageway configured to accommodate a fastener and an outer surface configured to engage a structure in which the compression limiter is placed. A first retainer projects outwardly from the outer surface and includes a first retention surface that has at least a planar portion. The first retainer further includes an undercut surface disposed inwardly from the first retention surface so as to create a corner extending in a direction with at least a component perpendicular to the longitudinal direction. A method of forming the compression limiter is also disclosed.
F16B 43/02 - Washers or equivalent devicesOther devices for supporting bolt-heads or nuts with special provisions for engaging surfaces which are not perpendicular to a bolt axis or do not surround the bolt
F16B 5/02 - Joining sheets or plates to one another or to strips or bars parallel to them by means of fastening members using screw-thread
A planetary gear carrier has a drum cover and drum hub that make up a drum of the carrier and a carrier plate spaced from the drum cover defining a space in which the planetary gears reside, The drum cover, drum hub and carrier plate are joined by keys that are formed integrally with at least one of them that mate with surfaces of the other parts for precise assembly and re-assembly, and windows are defined through sets of spline teeth of the dram cover and drum hub through which planetary gears may be inserted for assembly to the carrier while the drum cover, drum hub and carrier plate are assembled to one another.
A component (10) is adapted for contact with a mating component (50) during attachment of the components to one another to form a related assembly in which a deformable pad (26) or pads improve stress distribution. The component includes a body having an interface surface in which the body is adapted to be contacted with the mating component at the interface surface of the body. One or more deformable pads are formed in the interface surface. Each deformable pad has a top surface that is offset outwardly from the interface surface relative to the body and a groove surrounding the deformable pad that is offset inwardly from the interface surface relative to the body.
An aluminum alloy powder metal is disclosed. A sintered part made from the aluminum alloy powder has a thermal conductivity comparable to or exceeding parts made from wrought aluminum materials.
B22F 1/00 - Metallic powderTreatment of metallic powder, e.g. to facilitate working or to improve properties
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
49.
Aluminum alloy powder metal with transition elements
A transition element-doped aluminum powder metal and a method of making this powder metal are disclosed. The method of making includes forming an aluminum-transition element melt in which a transition element content of the aluminum-transition element melt is less than 6 percent by weight. The aluminum-transition element melt then powderized to form a transition element-doped aluminum powder metal. The powderization may occur by, for example, air atomization.
B22F 1/00 - Metallic powderTreatment of metallic powder, e.g. to facilitate working or to improve properties
B22F 9/08 - Making metallic powder or suspensions thereofApparatus or devices specially adapted therefor using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
50.
DAMPENING ASSEMBLY AND RELATED METHOD OF MAKING SAME
An assembly comprising: a powder metal outer part (22) having a radially inward facing cylindrical surface (54) with a plurality of facets (52) formed thereon that, in an alternating fashion, extend in an axial direction from an axial side of the powder metal outer part toward an opposite axial side of the powder metal outer part to a position between the opposing axial sides of the powder metal outer part; a powder metal inner part (20) having a radially outward facing cylindrical surface with a plurality of facets formed thereon that, in an alternating fashion, extend in an axial direction from an axial side of the powder metal inner part toward an opposite axial side of the powder metal inner part to a position between the opposing axial sides of the powder metal inner part; and an intermediate component (26) disposed between the cylindrical surfaces of the powder metal outer part and the powder metal inner part that connects the powder metal outer part and the powder metal inner part together.
F16F 15/14 - Suppression of vibrations in rotating systems by making use of members moving with the system using freely-swinging masses rotating with the system
F16F 1/38 - Springs made of plastics, e.g. rubberSprings made of material having high internal friction with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin
A bearing cap (10) in which each foot includes an elongated protrusion (36) formed thereon positioned between the bolt hole and a side of said foot, with its major axis parallel to the axis of the bore partially defined by the bearing cap and includes ribs on its side surfaces that are perpendicular to its major axis.
B22F 1/00 - Metallic powderTreatment of metallic powder, e.g. to facilitate working or to improve properties
C22C 33/02 - Making ferrous alloys by powder metallurgy
F04C 18/02 - Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
A zirconium-doped aluminum powder metal and a method of making this powder metal are disclosed. The method of making includes forming an aluminum—zirconium melt in which a zirconium content of the aluminum—zirconium melt is less than 2.0 percent by weight. The aluminum—zirconium melt then powderized to form a zirconium-doped aluminum powder metal. The powderization may occur by, for example, air atomization.
B22F 1/00 - Metallic powderTreatment of metallic powder, e.g. to facilitate working or to improve properties
B22F 9/08 - Making metallic powder or suspensions thereofApparatus or devices specially adapted therefor using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
C22C 1/04 - Making non-ferrous alloys by powder metallurgy
A forged composite powder metal part, such as a CVJ inner race or bevel gear, and method of making the same are disclosed. The forged composite powder metal part includes a outer section concentrated with a first powder metal material, a inner section concentrated with a second powder metal material and a variable boundary profile between the materials of the two sections. For example, in a forged CVJ inner race, the different materials can provide improved wear resistance in the ball tracks and improved spline performance. As another example, in a forged bevel gear, the different materials can be used to create a continuous variable boundary profile that defines the depth of a harder layer over the teeth.
B22F 3/17 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by forging
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
B22D 7/02 - Casting compound ingots of two or more different metals in the molten state, i.e. integrally cast
F16H 55/06 - Use of materialsUse of treatments of toothed members or worms to affect their intrinsic material properties
B21K 1/30 - Making machine elements wheelsMaking machine elements discs with gear-teeth
B22F 7/02 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite layers
A power steering pump and water pump assembly is disclosed. The assembly includes a power steering pump with a rotating shaft and a water pump. The water pump has a housing and a rotatable shaft for driving an impeller, which is mounted on an inner end of the shaft. An outer end of the water pump shaft engages the shaft of the power steering pump, and the power steering pump shaft drives the water pump shaft. The water pump may include a seal and a bearing having an inner race and outer race for supporting an outer end of the water pump shaft and cantilevering the shaft to support and journal the impeller. The shaft of the power steering pump may engage the shaft of the water pump through engagement of male and female torque transmitting profiles that axially slide together.
An aluminum alloy powder metal is disclosed. A sintered part made from the aluminum alloy powder has thermal conductivity comparable to or exceeding parts made from wrought aluminum materials.
A transition element-doped aluminum powder metal and a method of making this powder metal are disclosed. The method of making includes forming an aluminum-transition element melt in which a transition element content of the aluminum-transition element melt is less than 6 percent by weight. The aluminum-transition element melt then powderized to form a transition element-doped aluminum powder metal. The powderization may occur by, for example, air atomization.
A transition element-doped aluminum powder metal and a method of making this powder metal are disclosed. The method of making includes forming an aluminum-transition element melt in which a transition element content of the aluminum-transition element melt is less than 6 percent by weight. The aluminum-transition element melt then powderized to form a transition element-doped aluminum powder metal. The powderization may occur by, for example, air atomization.
B22F 9/08 - Making metallic powder or suspensions thereofApparatus or devices specially adapted therefor using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
59.
ALUMINUM ALLOY POWDER METAL WITH HIGH THERMAL CONDUCTIVITY
An aluminum alloy powder metal is disclosed. A sintered part made from the aluminum alloy powder has thermal conductivity comparable to or exceeding parts made from wrought aluminum materials.
A method of joining multiple powder metal components to form a powder metal component assembly using an adhesive is disclosed. By machining at least one of the powder metal components prior to the adhesive joining, otherwise difficult to machine features can be more easily machined for less cost and at higher production rates. Unlike high temperature joining techniques, the adhesive joins the powder metal components at room temperature. This room temperature adhesive joining eliminates the thermal distortions in pre-joined machined features common to high temperature joining techniques such as brazing or welding that bring these features out of specification during joining.
F01L 1/34 - Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
F01L 1/344 - Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
F16B 11/00 - Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
The disclosed method provides a way to fabricate a powder metal compact implementing a top fill through one or more of the upper tool members. The top fill step allows for pre-compaction chamber, defined at least in part by at least one of the upper tool members, to be filled with a powder metal after the upper tool member is initially lowered, but before compaction of the powder metal. The manner in which the pre-compaction chamber is filled allows for the formation of complex geometries in powder metal compacts that are not obtainable using conventional lower tool powder transfer motions and further minimizes or avoids unacceptable variations in powder fill to final part ratios across the powder metal compact.
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
B22F 3/00 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor
A compression limiter is disclosed that comprises an upper surface and a lower surface. The compression limiter further comprises an inner surface that defines a passageway configured to accommodate a fastener and an outer surface configured to engage a structure in which the compression limiter is placed. A first retainer projects outwardly from the outer surface and includes a first retention surface that has at least a planar portion. The first retainer further includes an undercut surface disposed inwardly from the first retention surface so as to create a corner extending in a direction with at least a component perpendicular to the longitudinal direction. A method of forming the compression limiter is also disclosed.
A powder metal insert for overmolding and method of making it has retention features on the outer surface extending from each end and angularly offset from one another.
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
A zirconium-doped aluminum powder metal and a method of making this powder metal are disclosed. The method of making includes forming an aluminum- zirconium melt in which a zirconium content of the aluminum-zirconium melt is less than 2.0 percent by weight. The aluminum- zirconium melt then powderized to form a zirconium-doped aluminum powder metal. The powderization may occur by, for example, air atomization.
B22F 9/08 - Making metallic powder or suspensions thereofApparatus or devices specially adapted therefor using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
A zirconium-doped aluminum powder metal and a method of making this powder metal are disclosed. The method of making includes forming an aluminum- zirconium melt in which a zirconium content of the aluminum-zirconium melt is less than 2.0 percent by weight. The aluminum- zirconium melt then powderized to form a zirconium-doped aluminum powder metal. The powderization may occur by, for example, air atomization.
A differential assembly, bevel gears for the assembly, and a method of making the bevel gears are disclosed. The bevel gears have a form which provides for high power density transfer in a reliable manner. The sphere diameter of the gears and overall size of the differential assembly can be reduced.
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
67.
Aluminum alloy powder metal bulk chemistry formulation
A powder metal mixture is disclosed that provides improved mechanical properties for parts made from powder metal, such as cam caps. The powder metal mixture, upon sintering, forms an S phase intermetallic in the Al—Cu—Mg alloy system. The S phase is present in a concentration that results in an enhanced response to cold work strengthening of the powder metal part. Further, by minor adjustments to certain alloy elements, such as tin, the tensile properties of the resultant part may be adjusted.
A machining tool insert holder comprises a first surface, a second surface opposite the first surface, and a first insert tip slot extending between the first surface and the second surface, The first insert tip slot is configured to support a first insert tip. The insert holder further includes elevated projections extending from the first and second surfaces proximate the first insert tip slot.
A forged composite powder metal CVJ inner race and method of making the same are disclosed. The forged composite inner race includes a outer section concentrated with a first powder metal material, a inner section concentrated with a second powder metal material and a variable boundary profile between the materials of the two sections. The different materials provide for improved wear resistance in the ball tracks and improved spline performance.
B22F 7/02 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite layers
A powder metal component (34) has an outer diameter that is inserted in a bore of another component (18) during assembly with an interference fit between the two components. Ribs (30) are formed on the outer diameter of the component (34) during compaction and sintering of the component. The ribs (30) have a surface that has been compressed to a greater density than a surface (31) of the outer diameter between the ribs to produce a major diameter and effective roundness defined by high points of the ribs.
A brazed part, and methods of forming a brazed joint therein, are disclosed. The brazed part includes two or more components that are brazed together. Using the method of locating the parts herein disclosed, an inter-component gap between the components may be formed. Flow control features formed along the inter-component gap may then be used to assist in the retention of the braze material between the components during brazing.
A retainer for a one-way clutch is provided. In some embodiments, the retainer includes an annular portion with an inner circumferential surface, an outer circumferential surface and a first axial surface disposed between the inner circumferential surface and the outer circumferential surface. The first axial surface has a plurality of grooves, a second axial surface is disposed between the inner circumferential surface and the outer circumferential surface, and the second axial surface is configured to engage an outer race of the one-way clutch assembly. The retainer also includes a plurality of inner lobes that project generally radially inwardly from the inner circumferential surface, and are configured to engage an inner race of the one-way clutch assembly.
A differential assembly, bevel gears for the assembly, and a method of making the bevel gears are disclosed. The bevel gears have a form which provides for high power density transfer.
A compression limiter is disclosed that comprises an upper surface and a lower surface. The compression limiter further comprises an inner surface that defines a passageway configured to accommodate a fastener and an outer surface configured to engage a structure in which the compression limiter is placed. A first retainer projects outwardly from the outer surface and includes a first retention surface that has at least a planar portion. The first retainer further includes an undercut surface disposed inwardly from the first retention surface so as to create a corner extending in a direction with at least a component perpendicular to the longitudinal direction. A method of forming the compression limiter is also disclosed.
A method and apparatus for forming a powder metal forging (B) includes a die set (A1D) for forming the powder metal forging (B) having a first die (A) complementary with a second die (D) in a longitudinal direction (ZC). The die set (A,D) has at least two features (10) of dimensions with a longitudinal component (10) and a lateral component (18), and at least the lateral component (18) varies along the longitudinal direction (ZC), at least one such feature (10) in each die (A,D). Each of the first die (A) and the second die (D) includes a castellated parting interface (12,13) dissecting the laterally varying internal longitudinal feature (10, 18) in the first die from the laterally varying feature (10, 18) in the second die (D). The castellation (12,13) in the dies (A,D) provides forged powder metal parts (B) with features of opposite drafts without trapping the part (B) in the dies (A,D).
A process for manufacturing connecting rods is provided which comprises the steps of compacting, sintering, and powder forging a powder metal comprising a carbon source and a prealloyed powder consisting essentially of iron and copper. The connecting rods made from this process have sufficient hardness and strength to be used in an engine and do not require any additional quenching or tempering.
C22C 33/02 - Making ferrous alloys by powder metallurgy
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
F16C 7/02 - Constructions of connecting-rods with constant length
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
77.
Method for assembling a two-piece punch into a tool
A tool for use in a powder metal process is disclosed. The tool includes an upper tool and a lower tool. The upper and lower tools may include multiple members for each tool. The lower tool having a predetermined cross sectional profile that continuously expands outward from or near a center point of the lower tool. The lower tool is also secured within a press for the powder metal process via a fastening mechanism.
The disclosed method provides a way to fabricate a powder metal compact implementing a top fill through one or more of the upper tool members. The top fill step allows for pre-compaction chamber, defined at least in part by at least one of the upper tool members, to be filled with a powder metal after the upper tool member is initially lowered, but before compaction of the powder metal. The manner in which the pre-compaction chamber is filled allows for the formation of complex geometries in powder metal compacts that are not obtainable using conventional lower tool powder transfer motions and further minimizes or avoids unacceptable variations in powder fill to final part ratios across the powder metal compact.
A one-way clutch with an outer race and an inner race is disclosed. One of the races includes at least one pawl and an engagement member for holding the at least one pawl in engagement with ratchet teeth on the other race. The contact surface of the at least one pawl or the ratchet teeth is an arcuate shape for improved load distribution. The arcuate contact surface has a radius of curvature that is greater than a radius of curvature at corners adjacent to the arcuate contact surface.
A forging die tool set defines a cavity and includes a core rod in the cavity for shaping a void in a work piece. The core rod extends in a direction in which the work piece is introduced, compressed, and ejected from the cavity. The core rod includes an upper portion and a lower portion. The upper portion has a cross sectional shape that forms a certain shape in the work piece and a radially tapered section that tapers toward the lower portion of the core rod. The lower portion also has a cross sectional shape that forms a certain shape in the work piece, and the cross sectional shape of the upper portion differs from the cross sectional shape of the lower portion, the lower portion being a more wear resistant shape characterized by larger radii and the upper portion being a finishing shape with smaller radii for shaping the final form of the forged work piece.
A method of joining multiple powder metal components to form a powder metal component assembly using an adhesive is disclosed. By machining at least one of the powder metal components prior to the adhesive joining, otherwise difficult to machine features can be more easily machined for less cost and at higher production rates. Unlike high temperature joining techniques, the adhesive joins the powder metal components at room temperature. This room temperature adhesive joining eliminates the thermal distortions in pre-joined machined features common to high temperature joining techniques such as brazing or welding that bring these features out of specification during joining.
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
F01L 1/34 - Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening
B29C 65/48 - Joining of preformed partsApparatus therefor using adhesives
82.
ALUMINUM ALLOY POWDER METAL BULK CHEMISTRY FORMULATION
A powder metal mixture is disclosed that provides improved mechanical properties for parts made from powder metal, such as cam caps. The powder metal mixture, upon sintering, forms an S phase intermetallic in the Al-Cu-Mg alloy system. The S phase is present in a concentration that results in an enhanced response to cold work strengthening of the powder metal part. Further, by minor adjustments to certain alloy elements, such as tin, the tensile properties of the resultant part may be adjusted.
A powder metal mixture is disclosed that provides improved mechanical properties for parts made from powder metal, such as cam caps. The powder metal mixture, upon sintering, forms an S phase intermetallic in the Al-Cu-Mg alloy system. The S phase is present in a concentration that results in an enhanced response to cold work strengthening of the powder metal part. Further, by minor adjustments to certain alloy elements, such as tin, the tensile properties of the resultant part may be adjusted.
A method of forming a powder metal forging, which includes the steps of providing a preform including a sintered powder metal composition; inserting the preform in at least one part of a die set having a top die and a bottom die, at least one of the top die and the bottom die defining a helical forge form therewithin; closing the die set wherein the top die is contacting the bottom die; and compressing the preform in the forge form using an upper punch including a core rod and a lower punch, the compressing step occurring after the closing step, the compressing step resulting in a formed part having a helical outer surface. The method and apparatus of the present invention is particularly advantageous when forming a powder metal forging helical outer surface and an inner contour such as a cylindrical inside diameter.
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
B22F 3/17 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by forging
85.
Powder metal forging and method and apparatus of manufacture
A method of forming a powder metal forging, including the steps of: forming a preform including a sintered powder metal composition; inserting the preform in a die set having a bottom die and a top die, the die set defining a forge form therewithin, the die set being in a closed position wherein the top die is contacting the bottom die; and compressing the preform in the forge form using an upper punch and a lower punch, the compressing step resulting in a formed part. The closed die set minimizes or eliminates flash in the formed part, particularly in the contoured surfaces, which allows the forging to be through hardened by direct quenching after the forging operation, without the need to remove hardened flash from these surfaces.
A brazed part, and methods of forming a brazed joint therein, are disclosed. The brazed part includes two or more components that are brazed together. Using the method of locating the parts herein disclosed, an inter-component gap between the components may be formed. Flow control features formed along the inter-component gap may then be used to assist in the retention of the braze material between the components during brazing.
A process for manufacturing connecting rods is provided which comprises the steps of compacting, sintering, and powder forging a powder metal comprising a carbon source and a prealloyed powder consisting essentially of iron and copper. The connecting rods made from this process have sufficient hardness and strength to be used in an engine and do not require any additional quenching or tempering.
B22F 3/17 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by forging
An overrunning clutch has a first race, a second race, a set of pawls between the first race and the second race and a set of springs between the first race and the second race, one spring for each pawl and each corresponding spring biasing the corresponding pawl into a position in which the first race and the second race are engaged with each other in a driving direction and are disengaged from each other in a free wheeling direction. Each spring is received in a spring receiving recess of one of the races and biases a rearward portion of the corresponding pawl radially inwardly into a pawl receiving recess of the race.
A one-way clutch with an outer race and an inner race is disclosed. One of the races includes at least one pawl and an engagement member for holding the at least one pawl in engagement with ratchet teeth on the other race. The contact surface of the at least one pawl or the ratchet teeth is an arcuate shape for improved load distribution. The arcuate contact surface has a radius of curvature that is greater than a radius of curvature at corners adjacent to the arcuate contact surface.
A forging die tool set defines a cavity and includes a core rod in the cavity for shaping a void in a work piece. The core rod extends in a direction in which the work piece is introduced, compressed, and ejected from the cavity. The core rod includes an upper portion and a lower portion. The upper portion has a cross sectional shape that forms a certain shape in the work piece and a radially tapered section that tapers toward the lower portion of the core rod. The lower portion also has a cross sectional shape that forms a certain shape in the work piece, and the cross sectional shape of the upper portion differs from the cross sectional shape of the lower portion, the lower portion being a more wear resistant shape characterized by larger radii and the upper portion being a finishing shape with smaller radii for shaping the final form of the forged work piece.
The invention provides an accurate powder metal component having a body with opposed surfaces at least one of which has at least one projection of smaller cross-sectional area than the main portion of the body of the component. The distance from the free end of the projection to the opposite end of the component defines one dimension of the component that must be relatively accurate, in one embodiment to slide against and form a seal that inhibits liquid flow against another component of an assembly. In the manufacturing method, the powdered metal component is made by compaction to form the body including a projection at the end, is sintered and thereafter is reduced in the dimension between the end of the projection and the opposite end of the component by coining the free end of the projection so as to reduce the dimension to within a tolerance of the nominal specified dimension.
F04C 2/10 - Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
B22F 3/00 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
92.
METHOD FOR OBTAINING FORGED CARBURIZED POWDER METAL PART
A method for obtaining a selectively non-carburized powder metal part. The steps include compacting, sintering, removing, forging and cooling. A metal powder is compacted to form a preform having at least one first surface in which a forged part is required to have a case depth and at least one second surface in which a carburized portion is required to be removed prior to forging. The preform is then sintered and carburized. After carburizing the at least one second surface of the preform is removed and subsequently forged and cooled. The forged part has at least one second surface having improved post forging properties and at least one first surface having improved performance features. A part made from the present method is also provided.
B22F 3/17 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by forging
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
A gear and a method of making a forged powder metal gear having a plurality of teeth and a variable case depth profile forged in the plurality of teeth. Each tooth of the plurality of teeth has a first surface and a tooth root. A variable case depth profile is formed in each tooth of the plurality of teeth, whereby the variable case depth profile exhibits greater tooth wear resistance on the first surface and greater impact resistance in the tooth root.
B22F 3/17 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by forging
B22F 3/24 - After-treatment of workpieces or articles
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
F16H 1/14 - Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising conical gears only
A forged composite gear and a method of making a forged composite powder metal gear. The forged composite gear includes a plurality of teeth extending from a core, a first section having a first powder metal material, a second section having a second powder metal material and a variable boundary profile. The variable boundary profile is formed between the first section and the second section, whereby said variable boundary profile exhibits greater tooth wear resistance on the teeth and greater impact resistance in the core.
B22F 3/17 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by forging
B22F 5/08 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheelsManufacture of workpieces or articles from metallic powder characterised by the special shape of the product of cam discs
B22F 7/02 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite layers
B22F 7/06 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools
The invention provides a method of manufacturing a ferrous monolithic component and the component that results from the method. The method of the invention utilizes selective rapid cooling of the portion of the component that is desired to have increased strength and selective controlled cooling of the portion or portions which are desired to be more machinable. The controlled cooling may include cooling, re-heating and re-cooling. The result is a component with local high strength in the rapidly cooled zones and locally altered metallurgical properties to improve machinability in the more slowly cooled zones.
C21D 9/30 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for crankshaftsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for camshafts
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
A powder metal component (34) has an outer diameter that is inserted in a bore of another component (18) during assembly with an interference fit between the two components. Ribs (30) are formed on the outer diameter of the component (34) during compaction and sintering of the component. The ribs (30) have a surface that has been compressed to a greater density than a surface (31) of the outer diameter between the ribs to produce a major diameter and effective roundness defined by high points of the ribs.
A cast metal connecting rod of the type used in a reciprocating piston engine has a beam section between two end sections. The beam section and the end sections are integral with one another and are at least partially made of a cast metal material. At least the beam section of the connecting rod includes an insert made of a sintered powder metal material. The insert is at least partially encapsulated by the cast metal material of the connecting rod. The insert reinforces the connecting rod and can help match characteristics of surrounding or mating parts of the engine that are made of materials more similar to the material of the insert than the cast metal of the connecting rod. The cast metal material, for example aluminum alloy, of the connecting rod can also provide localized regions of high machinability where needed.
A method of forming a powder metal forging, which includes the steps of providing a preform including a sintered powder metal composition; inserting the preform in at least one part of a die set having a top die and a bottom die, at least one of the top die and the bottom die defining a helical forge form therewithin; closing the die set wherein the top die is contacting the bottom die; and compressing the preform in the forge form using an upper punch including a core rod and a lower punch, the compressing step occurring after the closing step, the compressing step resulting in a formed part having a helical outer surface. The method and apparatus of the present invention is particularly advantageous when forming a powder metal forging helical outer surface and an inner contour such as a cylindrical inside diameter.
B23P 15/14 - Making specific metal objects by operations not covered by a single other subclass or a group in this subclass gear parts, e.g. gear wheels
99.
MULTI-PIECE THIN WALLED POWDER METAL CYLINDER LINERS
A powder metal cylinder liner with a ratio of the length to the wall thickness greater than 12 made of at least two end to end cylinder liner pieces with each piece having a ratio of the length to the wall thickness of less than 20. The powder metal composition includes approximately between 85% and 99% sponge iron powder, approximately between 0.1% and 2.0% graphite, and approximately between 0.1% and 2.0% ethylene bis-stearamide wax. The cylinder liner pieces can be made using conventional powder metal compaction and sintering processes.
The present invention provides a PM main bearing cap, and its precursor compact, with an undercut breathing window that is formed during a compaction process. By fabricating the undercut during the compaction process, the invention eliminates the need for a secondary machining operation to form the undercut feature in the bearing caps.