An impact wrench is provided with a battery to power the motor. The impact wrench provides improved portability since the impact wrench does not need to be connected to an electrical extension cord or a pneumatic hose. The output drive, motor, batteries and main handle may be aligned along the axial direction of the tool. The batteries may be located between the motor and the main handle.
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
A fluid compressor system having an electro-magnetic throttle valve (EMTV) that utilizes magnetic forces supplied by an electromagnet to actuate the opening and closing of the valve. The fluid compressor system may include a control system that controls the position of a valve plate of the EMTV, allowing the EMTV to fully or partially actuate to a plurality of intermediate positions depending on a current supplied to the electromagnet by the control system. The control system may control a location of the valve plate with reference to the electromagnet by balancing the forces acting on the valve plate, such as electromagnetic forces supplied by the electromagnet, biasing forces supplied by biasing components, and gravitational forces acting on the valve plate. The EMTV may include a blowdown system configured to release a pressure within the fluid compressor system when the inlet on the EMTV is closed.
F16K 31/08 - Operating meansReleasing devices electricOperating meansReleasing devices magnetic using a magnet using a permanent magnet
F04B 49/22 - Control of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for in, or of interest apart from, groups by means of valves
F04C 18/107 - Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
F04C 28/24 - Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves
F04C 28/26 - Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves using bypass channels
F04C 29/12 - Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
F16K 27/02 - Construction of housingsUse of materials therefor of lift valves
An impact tool having a split anvil assembly includes an internal anvil portion fixed inside a housing of the impact tool and an external anvil portion that is removably attached to the internal anvil portion and extends outside of the housing. The external anvil portion includes a retractable pin biased to an extended position to engage the internal anvil portion to secure the external anvil portion to the internal anvil portion and depressed to a retracted position to permit the external anvil portion to be disengaged from the internal anvil portion. The internal anvil portion and the external anvil portion may include respective internal and external grooves that interconnect with each other to link the movement of the internal anvil portion to the external anvil portion.
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
A motor assembly cooling system includes a plurality of liquid passages inside a motor housing. The motor assembly is cooled by circulating a liquid directly over the outside surface of the stator stack, spraying liquid onto the stator end coil surfaces and/or circulating liquid in an interior space between the motor rotor and the mating rotor shaft. Waste heat from the motor stator and rotor is extracted allowing for a higher motor efficiency and/or a smaller motor size, resulting in a lower motor cost. The liquid may be a lubricant (e.g., oil) used to lubricate the bearing system in the air end and motor, or a coolant.
H02K 9/19 - Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
H02K 5/20 - Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
H02K 7/00 - Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
A fluid compressor system has a scavenge loss limiter that increases the efficiency of the fluid compressor system by reducing the compressed working fluid recirculated into the airend through a scavenge flow. The scavenge loss limiter includes a scavenge hole positioned at a discharge end face of a rotor cavity of the compressor housing. As a rotor of the compressor system rotates, the rotor may intermittently restrict the free-flowing scavenge flow returning from a lubricant separation tank. The rotor may be a male rotor having a plurality of male lobes. As the discharge end clearance between the rotor and the discharge end face is tightly controlled and monitored, a better control of the scavenge flow returning to the rotor cavity is achieved.
F04C 18/16 - Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
F04C 29/00 - Component parts, details, or accessories, of pumps or pumping installations specially adapted for elastic fluids, not provided for in groups
8.
PUMP WITH CONDUIT SYSTEM FLUIDLY COUPLED TO CYLINDERS
A pump includes a cylinder and a piston disposed within the cylinder to define a first chamber and a second chamber within the cylinder. The piston is configured to move within the cylinder to reduce a size of the first chamber to discharge material from the first chamber. The pump also includes a conduit system configured to direct fluid into the first chamber to aerate material in the first chamber.
A power tool includes a tool housing and a display assembly housed within the tool housing. The display assembly includes a display screen for displaying graphical information about the operation of the power tool and a printed circuit board operatively coupled to the display screen, where the printed circuit board includes control circuitry for the display screen. The display assembly also includes a rigid spacer between the display screen and the printed circuit board that defines cavities for receiving potting material. The display assembly further includes a boat peripherally surrounding and supporting the display screen, the printed circuit board, and the rigid spacer. The power tool also includes an elastomeric gasket seated between the printed circuit board and the boat for isolating the display screen. The power tool can include a protective cover for shielding the display screen.
B25F 5/02 - Construction of casings, bodies or handles
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
Compressed air dryer systems are described. In an aspect, a system includes, but is not limited to, a plurality of dryer modules and a controller operable to regulate a run-time of each of the plurality of dryer modules. Each dryer module is configured to direct a portion of cooling medium past a stream of compressed air. Each dryer module includes a temperature sensor in thermal communication with the portion of cooling medium, and a chiller configured to reduce a temperature of the portion of cooling medium based on the sensed temperature and a temperature set-point. The controller communicatively is coupled with the plurality of dryer modules and operable to monitor a plurality of run-times. Each run-time is associated with a corresponding dryer module. The controller is further operable to direct operation of each dryer module based on its run-time by modifying the temperature set-point of the dryer module.
An air drying unit for compressed air systems includes a precooler/reheater, a main cooler, and a moisture separator. Incoming air is cooled to cause moisture within the compressed air to condense, and the condensate separated to dry the compressed air. The air drying unit includes an integrated intake filtration and outtake filtration sections with horizontally oriented filter elements that filter particulates and oil from incoming and outgoing compressed air.
F26B 11/02 - Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
Integrally geared centrifugal compressor systems are described that include eccentric cartridges that house bearings and seals to maintain rotor concentricity for a variety of pinons integrated in a fixed gearbox design to provide multiple impeller speeds with a single gearbox design. In an aspect, a system includes, but is not limited to, a pinion configured to be rotated by a bull gear about a rotational axis; a rotor coupled to the pinion; and an eccentric cartridge configured to house a bearing assembly through which the rotor extends to support rotation of the rotor, the eccentric cartridge having an outer surface and an inner surface, wherein the inner surface is eccentric relative to the outer surface to align the rotational axis with a center axis of the bearing assembly.
A compressor system can include a lubricant injection system useful to supply lubricant to an airend. The compressor system can include a variable lubricant flow valve which can be regulated by a controller on the basis of operating conditions of the compressor system. In one form the compressor system also includes an oil separator and/or an oil cooler with or without a thermal control valve. The controller can have one or more modes of operation, including a mode in which the controller regulates the flow of lubricant to the airend to Increase an internal flow area of the valve when the airend is operated at an unloaded or loaded condition. In some forms the controller can regulate the lubricant flow valve and/or the thermal control valve and/or the lubricant cooler.
F04C 18/16 - Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
F04C 23/00 - Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluidsPumping installations specially adapted for elastic fluidsMulti-stage pumps specially adapted for elastic fluids
F04C 28/06 - Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
F04C 29/00 - Component parts, details, or accessories, of pumps or pumping installations specially adapted for elastic fluids, not provided for in groups
A rotary power tool assembly including a hammercase an axis extending between a forward end and a rearward end, a drive mechanism housed within the hammercase, and a hammer driven by the drive mechanism to apply a rotational impact force on an anvil. The anvil includes an output shaft rotatable about the axis, a plurality of anvil jaws extending from the axis, and a flange fixedly connected to an end of the output shaft and extending radially from the axis, wherein the flange supports the plurality of anvil jaws, the flange extending over the plurality of anvil jaws. The anvil includes a magnet attached to the flange opposite to the plurality of anvil jaws. An anvil angle sensor is configured to read and interpret magnetic flux changes of the magnet and determine the position of the anvil rotating about the axis.
A filter for compressed air systems is provided. The filter includes a filter housing with a filter therein between an air inlet and an air outlet. Compressed air flowing between the air inlet and the air outlet passes through the filter housing and the filter element. A base is removably fastened to the filter housing which may be separated from the filter housing to allow the filter element to be removed and replaced.
B01D 46/00 - Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
B01D 46/24 - Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
B01D 46/42 - Auxiliary equipment or operation thereof
B01D 46/60 - Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in parallel arranged concentrically or coaxially
A power tool and method of controlling a motor of the power tool based on a determination of torque is provided. The method of determining torque uses the energy output by the drive mechanism and the angle of rotation of the output shaft to estimate torque. The energy is determined by subtracting efficiency losses (or gains) from a nominal energy of the drive mechanism in order to improve the torque estimation.
B25B 23/147 - Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
20.
MULTI-STAGE COMPRESSOR HAVING INTERSTAGE LUBRICANT INJECTION VIA AN INJECTION ROD
A compressor is disclosed which can include a first stage and a second stage. In one form the compressor includes contact cooled compressor stages. The compressor can include a rod useful to inject a lubricant for purposes of cooling/lubricating/sealing the rotating components of the compressor. In one form the rod is an elongate rod with openings which permit a lubricant such as oil to be injected. The injected oil can be atomized via the openings. The rod can be positioned in the interstage space between the first and second stages, and can include a variety of openings.
F04C 23/00 - Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluidsPumping installations specially adapted for elastic fluidsMulti-stage pumps specially adapted for elastic fluids
F04C 29/00 - Component parts, details, or accessories, of pumps or pumping installations specially adapted for elastic fluids, not provided for in groups
A power tool includes a housing having a working end and a side (e.g., back side) separate from the working end, and a user interface supported by the housing and positioned on the side of the housing. The power tool can also include one or more protrusions defined by the housing proximate to the user interface and extending away from the housing for protecting the user interface from an impact on the side of the housing. A removable user interface guard for the power tool includes a body formed of an impact resistant material for protecting the user interface of the power tool from an impact at the side of the power tool, and a retention feature on the body configured to mate with a corresponding feature on the housing of the power tool to removably secure the body to the side of the housing over the user interface.
B25F 5/02 - Construction of casings, bodies or handles
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
A user interface for a hand-held portable power tool is shown and described. In embodiments, the hand-held portable power tool includes a motor, a controller operatively coupled to the motor, and a user interface in electrical communication with the controller. The user interface includes a display screen and a plurality of control buttons, the controller is configured to receive inputs from the control buttons when at least one button among the plurality of control buttons is actuated and display an image on the display screen, wherein the image includes at least a plurality of icons that correspond to the plurality of control buttons, such that interacting with a respective control button adjacent to a respective icon displayed on the user interface causes the user interface to display information pursuant to the respective icon.
B25F 5/02 - Construction of casings, bodies or handles
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
B25B 23/147 - Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
G06F 3/0487 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
23.
POWER TOOL WITH ACCESSORY ATTACHMENT MOUNT AND ACCESSORY THEREFOR
A power tool assembly includes a drive mechanism, a longitudinally extending housing, an electrical connection at the housing for receiving electrical energy, and an attachment mount on the housing for releasably attaching a tool accessory to the power tool assembly. The attachment mount includes electrical connections for mating electrical connectors of the tool accessory to furnish power and/or data transfer between the power tool and the tool accessory. The attachment mount includes at least one rail configured for sliding contact with at least a second rail of the tool accessory to restrict movement of the tool accessory, and a latching mechanism for releasably securing the tool accessory to the attachment mount. A tool accessory for releasably attaching to a power tool assembly includes electrical connectors for mating with electrical connections of an attachment mount, at least one rail, and a receiver for receiving a latching mechanism of the attachment mount.
B25F 5/02 - Construction of casings, bodies or handles
F21V 23/06 - Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices
F21V 33/00 - Structural combinations of lighting devices with other articles, not otherwise provided for
G06K 7/14 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
H04N 23/54 - Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
A dynamic compressor includes an impeller having impeller vanes disposed around a hub, a shroud, and a diffuser having a shroud surface adjacent to the shroud and a hub surface adjacent to the hub, wherein the diffuser is circumferentially disposed around the impeller. The diffuser includes a plurality of diffuser vanes extending from the hub surface to the shroud surface, each having a vane leading edge and a vane trailing edge. The diffuser includes a centrifugal acceleration stabilizer ring formed in the shroud surface located in a vaneless region defined between an impeller trailing edge and the vane leading edge. The centrifugal acceleration stabilizer ring stabilizes the flow of the fluid by changing the circumferentially-flowing high velocity fluid flow exiting the impeller into a radially-flowing high velocity fluid flow before entering the diffuser, improving the efficiency of the dynamic compressor.
A computer may display on a graphical user interface (GUI) a component library including a set of components relating to a compressed air system. The GUI may have a modeling interface for configuring a virtual model using the set of components. The computer may simulate the virtual model to determine one or more optimizations to the compressed air system. The computer may also determine the cost of implementing the compressor system optimization.
G06F 30/20 - Design optimisation, verification or simulation
G05B 13/04 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
G05D 16/20 - Control of fluid pressure characterised by the use of electric means
A fluid compressor system has a scavenge loss limiter that increases the efficiency of the fluid compressor system by reducing the compressed working fluid recirculated into the airend through a scavenge flow. The scavenge loss limiter includes a scavenge hole positioned at a discharge end face of a rotor cavity of the compressor housing. As a rotor of the compressor system rotates, the rotor may intermittently restrict the free-flowing scavenge flow returning from a lubricant separation tank. The rotor may be a male rotor having a plurality of male lobes. As the discharge end clearance between the rotor and the discharge end face is tightly controlled and monitored, a better control of the scavenge flow returning to the rotor cavity is achieved.
F04C 29/00 - Component parts, details, or accessories, of pumps or pumping installations specially adapted for elastic fluids, not provided for in groups
F04C 18/16 - Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
A power tool having a handle extending along a longitudinal axis, wherein the handle is configured to house a motor. A ratchet head is connected to a first end of the handle. The ratchet head supports an output shaft having a drive square or bit that is driven by the motor. The ratchet wrench includes an application-targeted lighting system disposed around a periphery of the handle that illuminates the ratchet head and a workpiece below the output shaft. The application-targeted lighting system may include an array of Chip-On-Board LED lights. The application-targeted lighting system illuminates the workspace in applications where socket extenders and/or deep sockets are used with the ratchet wrench.
Methods are provided for controlling a refrigerated dryer of a gas compressor system. In an aspect, a control system, including a controller and a flow sensor, selectively operates in a power saving mode in which the controller shuts down a refrigerant compressor included in the dryer system when the flow sensor indicates that no compressed gas is flowing through the dryer. The control system uses input from a temperature sensor to determine whether to activate the compressor regardless of the flow of compressed gas through the dryer.
The present disclosure is directed to a dryer system for drying compressed gas discharged from a compressor. The dryer system includes a refrigeration drying system operable for removing moisture from the compressed gas and a desiccant drying system with a desiccant wheel located in series downstream of the refrigeration drying system operable for removing additional moisture from the compressed gas.
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
B01D 53/06 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents
F24F 3/14 - Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatmentApparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidificationAir-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatmentApparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by dehumidification
A positive displacement roots blower can include a housing having an inlet structured to receive an incoming flow of a fluid, an outlet structured to receive an outgoing flow of the fluid, and a passage. The positive displacement roots blower can also include a pair of intermeshed rotating members supported for complementary rotation within the housing, where the rotating members and the housing form respective operating volumes there between which rotate with the rotating members. Each of the respective operating volumes has the following regions: (1) open to inlet/closed to outlet; (2) closed to inlet/closed to outlet; and (3) closed to inlet/open to outlet. The passage includes a restriction and connects to at least one of the operating volumes when the at least one of the respective operating volumes is in region (2). The restriction can be a venturi feedback connecting to the outlet.
F04C 18/12 - Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
F04C 25/00 - Adaptations for special use of pumps for elastic fluids
F04C 29/00 - Component parts, details, or accessories, of pumps or pumping installations specially adapted for elastic fluids, not provided for in groups
A pneumatic motor includes a stator having a stator inner wall including a dwell region and a rotor eccentrically disposed within the stator. The rotor is configured to rotate about the axis of rotation and includes a plurality of vanes disposed around the rotor. Each vane of the plurality of vanes is configured to slide within a respective slot formed in the outer surface of the rotor between a fully retracted position and a fully extended position as the rotor rotates about the axis of rotation to maintain contact with the stator inner wall. The stator inner wall has a radius relative to the axis of rotation that is substantially constant within the dwell region so that vanes of the plurality of vanes are in the fully extended position within the dwell region.
F01C 1/348 - Rotary-piston machines or engines having the characteristics covered by two or more of groups , , , or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group or and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the vanes positively engaging, with circumferential play, an outer rotatable member
A pneumatic wrench including a pneumatic motor that includes a rotor, a rotor housing, an endplate, and a wear plate. The rotor has an output shaft configured to rotate about an axis and a plurality of vanes that extend radially from the axis that compressed air exerts work against to drive the rotor. The rotor housing has a cavity configured to house the rotor, receive the compressed air, and direct the compressed air about the rotor and out of the rotor housing. The endplate is coupled to the rotor housing and configured to receive the output shaft. The endplate includes a channel that is in fluid communication with the cavity. The wear plate is disposed between the endplate and the rotor housing and defines an exhaust port between the cavity and the channel for directing airflow from the cavity to the channel in an axial direction.
An active magnetic bearing apparatus for supporting a rotor of a rotary machine comprises an axial magnetic bearing unit and a radial magnetic bearing unit mounted directly to one another. One of the axial magnetic bearing unit and the radial magnetic bearing unit is mounted to a support for attachment to a housing of the rotary machine.
F16C 32/04 - Bearings not otherwise provided for using magnetic or electric supporting means
H02K 7/09 - Structural association with bearings with magnetic bearings
H02K 9/16 - Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the cooling medium circulates through ducts or tubes within the casing
H02K 9/18 - Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the external part of the closed circuit comprises a heat exchanger structurally associated with the machine casing
H02K 11/01 - Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields
H02K 11/21 - Devices for sensing speed or position, or actuated thereby
36.
Systems and methods for single header glycol distribution for multiplexed heat exchangers
Cooling medium circulation systems for supplying a cooling medium through a single header to multiplexed heat exchangers are described. In an aspect, a system includes, but is not limited to, a storage tank configured to hold a cooling medium in a fluid state; first and second circulation pumps fluidically coupled to the storage tank; a single cooling medium header fluidically coupled with each of the circulation pumps; a first dryer module configured to direct a first portion of cooling medium from the single cooling medium header past a first stream of compressed air and to direct the first portion of cooling medium back to the storage tank; and a second dryer module fluidically configured to direct a second portion of cooling medium from the single cooling medium header past a second stream of compressed air.
An impact tool having a multiple position non-contact trigger system. The trigger system includes a trigger member having at least one magnet moveable along a plurality of non-contact sensors when the trigger member moves from a non-actuated position to a fully actuated position. The plurality of non-contact sensors sense the movement of the trigger member and output a corresponding signal to a controller. The controller may command the impact tool to perform a function from a plurality of functions based on the position of the trigger element, where each position of the trigger element may correspond to a different mode of the power tool system.
B25F 5/00 - Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
38.
Electro-magnetic throttle valve with integrated blowdown conduit
A fluid compressor system having an electro-magnetic throttle valve (EMTV) that utilizes magnetic forces supplied by an electromagnet to actuate the opening and closing of the valve. The fluid compressor system may include a control system that controls the position of a valve plate of the EMTV, allowing the EMTV to fully or partially actuate to a plurality of intermediate positions depending on a current supplied to the electromagnet by the control system. The control system may control a location of the valve plate with reference to the electromagnet by balancing the forces acting on the valve plate, such as electromagnetic forces supplied by the electromagnet, biasing forces supplied by biasing components, and gravitational forces acting on the valve plate. The EMTV may include a blowdown system configured to release a pressure within the fluid compressor system when the inlet on the EMTV is closed.
F16K 31/08 - Operating meansReleasing devices electricOperating meansReleasing devices magnetic using a magnet using a permanent magnet
F04B 49/22 - Control of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for in, or of interest apart from, groups by means of valves
F04C 18/107 - Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
F04C 28/24 - Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves
F04C 28/26 - Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves using bypass channels
F04C 29/12 - Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
F16K 27/02 - Construction of housingsUse of materials therefor of lift valves
An electro-magnetic thermal control valve (EMTCV) is configured to selectably direct and control an amount of coolant fluid to a cooler in a coolant circulation system. The EMTCV includes a valve housing defining a main chamber, an electromagnet disposed in the valve housing, and a movable sleeve disposed within the main chamber. The movable sleeve is fixedly attached to a permanent magnet adjacent to the electromagnet. When the electromagnet is energized by a current supplied by a valve control system, the electromagnet exerts a force on the permanent magnet, moving the movable sleeve is from an idle position to plurality of intermediate positions or an actuated position.
F16K 11/07 - Multiple-way valves, e.g. mixing valvesPipe fittings incorporating such valvesArrangement of valves and flow lines specially adapted for mixing fluid with all movable sealing faces moving as one unit comprising only sliding valves with linearly sliding closure members with cylindrical slides
F16K 15/18 - Check valves with actuating mechanismCombined check valves and actuated valves
F16K 31/06 - Operating meansReleasing devices electricOperating meansReleasing devices magnetic using a magnet
F28F 27/02 - Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
A compressed air drying system is provided for removing moisture from compressed air. The dryer operates in two modes in response to the demand for compressed air. In a first mode of operation, a refrigeration compressor runs continuously and the speed of a condenser fan is varied to maintain a constant cooling temperature. In a second mode of operation, the refrigeration compressor runs intermittently between on and off periods. As result, the cooling temperature fluctuates during the second mode of operation.
A compressor system includes a compression module having an inlet for receiving air; and a filter housing in fluid communication with the compression module. The filter housing is constructed to house a filter, the filter having a sealing feature disposed at a first end of the filter and having an engagement feature disposed at a second end of the filter opposite the first end. The filter housing includes a trap door constructed to contact the engagement feature, and constructed to drive the engagement feature in a direction parallel to an axis of the filter toward the sealing feature and urge the sealing feature into sealing engagement with the filter housing.
Compressed air dryer systems are described. In an aspect, a system includes, but is not limited to, a plurality of dryer modules and a controller operable to regulate a run-time of each of the plurality of dryer modules. Each dryer module is configured to direct a portion of cooling medium past a stream of compressed air. Each dryer module includes a temperature sensor in thermal communication with the portion of cooling medium, and a chiller configured to reduce a temperature of the portion of cooling medium based on the sensed temperature and a temperature set-point. The controller communicatively is coupled with the plurality of dryer modules and operable to monitor a plurality of run-times. Each run-time is associated with a corresponding dryer module. The controller is further operable to direct operation of each dryer module based on its run-time by modifying the temperature set-point of the dryer module.
A fluid compressor system having an electro-magnetic throttle valve (EMTV) that utilizes magnetic forces supplied by an electromagnet to actuate the opening and closing of the valve. The fluid compressor system may include a control system that controls the position of a valve plate of the EMTV, allowing the EMTV to fully or partially actuate to a plurality of intermediate positions depending on a current supplied to the electromagnet by the control system. The control system may control a location of the valve plate with reference to the electromagnet by balancing the forces acting on the valve plate, such as electromagnetic forces supplied by the electromagnet, biasing forces supplied by biasing components, and gravitational forces acting on the valve plate. The EMTV may include a blowdown system configured to release a pressure within the fluid compressor system when the inlet on the EMTV is closed.
F16K 31/08 - Operating meansReleasing devices electricOperating meansReleasing devices magnetic using a magnet using a permanent magnet
F04B 49/22 - Control of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for in, or of interest apart from, groups by means of valves
F04C 18/107 - Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
F04C 28/24 - Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves
F04C 28/26 - Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves using bypass channels
F04C 29/12 - Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
F16K 27/02 - Construction of housingsUse of materials therefor of lift valves
A filter system can include a replaceable filter cartridge having a spinner element structured to swirl a mixed flow of compressible fluid and oil, as well as an end cap used to enclose an open interior of a filter media of the filter cartridge. The filter cartridge can be configured to interface with and be supported by a mesh holder. A housing can be attached over the filter cartridge to enclose the system and create a flow path for a mixed flow of compressible fluid and oil. The replaceable filter cartridge can be constructed of materials suitable for disposal in a waste incineration process. The mesh holder can be inserted on a combo-block and secured in place by a compression fitting. A stand pipe can extend into the interior of the filter media and be coupled with a central passage of the mesh holder.
Illustrative embodiments of impact tools with impact mechanisms rigidly coupled to electric motors are disclosed. In at least one illustrative embodiment, an impact tool may comprise an impact mechanism, an electric motor, and a control circuit. The impact mechanism may comprise a hammer and an anvil, the hammer being configured to rotate about a first axis and to periodically impact the anvil to drive rotation of the anvil about the first axis. The electric motor may comprise a rotor that is rigidly coupled to the impact mechanism, the electric motor being configured to drive rotation of the hammer about the first axis. The control circuit may be configured to supply a current to the electric motor and to prevent the current from exceeding a threshold in response to the hammer impacting the anvil.
An impact wrench is provided with a battery to power the motor. The impact wrench provides improved portability since the impact wrench does not need to be connected to an electrical extension cord or a pneumatic hose. The output drive, motor, batteries and main handle may be aligned along the axial direction of the tool. The batteries may be located between the motor and the main handle.
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
The present invention provides methods and systems an impact wrench having dynamically tuned drive components, such as an anvil/socket combination, and related methodology for dynamically tuning the drive components in view of inertia displacement, as well as stiffness between coupled components, and with regard to impact timing associated with clearance gaps between the component parts.
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
B25B 13/06 - SpannersWrenches with rigid jaws of socket type
B25B 23/00 - Details of, or accessories for, spanners, wrenches, screwdrivers
A dynamic compressor includes an impeller having impeller vanes disposed around a hub, a shroud, and a diffuser having a shroud surface adjacent to the shroud and a hub surface adjacent to the hub, wherein the diffuser is circumferentially disposed around the impeller. The diffuser includes a plurality of diffuser vanes extending from the hub surface to the shroud surface, each having a vane leading edge and a vane trailing edge. The diffuser includes a centrifugal acceleration stabilizer ring formed in the shroud surface located in a vaneless region defined between an impeller trailing edge and the vane leading edge. The centrifugal acceleration stabilizer ring stabilizes the flow of the fluid by changing the circumferentially-flowing high velocity fluid flow exiting the impeller into a radially-flowing high velocity fluid flow before entering the diffuser, improving the efficiency of the dynamic compressor.
An impact tool having a front lubrication assembly. The front lubrication assembly includes a lubrication port, a lubrication passage and at least one lubrication channel that directs a lubricant injected from a front end of the impact tool directly into an impact assembly of the impact tool. The lubrication passage extends through an anvil assembly of the impact tool, along an axis of rotation of the impact drive mechanism. The at least one lubrication channel extends away from the lubrication passage and delivers the lubricant to at the impact mechanism. The front lubrication assembly is accessed on a front end of the impact tool. The anvil assembly may be a split anvil assembly having an external anvil portion and an external anvil portion.
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
An impact tool having a split anvil assembly includes an internal anvil portion fixed inside a housing of the impact tool and an external anvil portion that is removably attached to the internal anvil portion and extends outside of the housing. The external anvil portion includes a retractable pin biased to an extended position to engage the internal anvil portion to secure the external anvil portion to the internal anvil portion and depressed to a retracted position to permit the external anvil portion to be disengaged from the internal anvil portion. The internal anvil portion and the external anvil portion may include respective internal and external grooves that interconnect with each other to link the movement of the internal anvil portion to the external anvil portion.
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
A turbocharged compressor system using an Organic Rankine Cycle system to recover waste heat from a compression process. The Organic Rankine Cycle system circulates an organic fluid through an evaporator, where the organic fluid vaporizes and is expanded in a turbine section of a turbocharger to drive a compressor section of the turbocharger. The organic fluid vapor is condensed in a condenser and is pumped to the evaporator once again for recirculation. The compressor section of the turbocharger pre-compresses a working fluid before entering an airend in a compression system. As the working fluid exits the airend, it may be delivered to the evaporator, where the waste heat from the working fluid evaporates the organic fluid flowing in the Organic Rankine Cycle system. The working fluid may also be circulated between intercoolers in multi-stage compressor systems.
A diaphragm pump having a crankshaft that is rotatable about a rotational axis and coupled to a piston. The piston is reciprocally displaceable within a piston cylinder along an axis of motion between suction and discharge strokes. A diaphragm housing coupled to the piston cylinder at least partially defines a pumping chamber through which fluid is pumped as the piston reciprocates. The axis of motion, which intersects a connection between the piston and the connecting rod, may not intersect the rotational axis of the crankshaft such that, relative to an arrangement in which the axis of motion does intersect the rotational axis, a peak magnitude of piston side load forces during the discharge stroke is reduced and a peak magnitude of piston side load forces during the suction stroke is increased so as to attain an improved balance between the peak magnitudes of piston side load forces of the discharge and suction strokes.
F04C 2/07 - Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them having crankshaft-and-connecting-rod type drive
F04B 15/02 - Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
A position sensor includes a plurality of E-shaped ferromagnetic cores arranged to define a circular opening therethrough to receive a shaft. Each E-shaped ferromagnetic core has a plurality of teeth, wherein adjacent E-shaped ferromagnetic cores of the arranged plurality of E-shaped ferromagnetic cores have an overlapping tooth. The position sensor further includes a frame surrounding the arranged plurality of E-shaped ferromagnetic cores, with the E-shaped ferromagnetic cores coupled to the frame.
F16C 32/04 - Bearings not otherwise provided for using magnetic or electric supporting means
G01D 5/20 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
H02K 1/30 - Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
H02K 3/52 - Fastening salient pole windings or connections thereto
H02K 7/09 - Structural association with bearings with magnetic bearings
A fluid compressor system having a pneumatic inlet/blowdown valve assembly that utilizes pneumatic pressure and vacuum available in the fluid compressor system for the actuation of an inlet valve and a blowdown valve. The actuation of the inlet valve and the blowdown valve is synchronized via a piston-cylinder actuator having a first piston and a second piston axially connected. The pneumatic blowdown/inlet valve assembly uses a first stage vacuum pressure to actuate the first piston and the second piston from an idle state where the inlet valve is closed to stop a flow of working fluid into the fluid compressor system and the blowdown valve is open to depressurize the fluid compressor system to an actuated state where the inlet valve is open to allow the flow of working fluid into a first airend and the blowdown valve is closed to allow a pressure buildup in the fluid compressor system.
G05D 16/20 - Control of fluid pressure characterised by the use of electric means
F15B 15/14 - Fluid-actuated devices for displacing a member from one position to anotherGearing associated therewith characterised by the construction of the motor unit of the straight-cylinder type
The present application relates to apparatus (400, 500) for measuring an impedance of an electrical load (300) that is configured to be coupled to a controlled current source (200). The apparatus (400, 500) comprises a first coupling node (402) configured to be coupled to a first terminal (302) of the load (300) and a second coupling node (404) configured to be coupled to a second terminal (304) of the load (300). The apparatus further comprises a transformer (406) having a primary winding (408) and a secondary winding (410) and a capacitance (412) connected in series between a first terminal (414) of the secondary winding (410) and the first coupling node (402). A second terminal (416) of the secondary winding (410) is connected to the second coupling node (404). The apparatus further comprises a processing unit (424) is configured to control an excitation signal that is applied to the primary winding (408) so as to cause a variation, corresponding to the excitation signal, in an input current of the load (300), measure the input current and an input voltage of the load (300), and, based on the measured input current and input voltage, determining the impedance of the load (300).
A centrifugal compressor impeller includes a plurality of blades on a front side that extend from a first axial side to an outer radial end of the impeller. The centrifugal impeller includes a back side having a nonlinear backwall. The backwall can include a flat area hear a bore of impeller, a flat area near a tip of the impeller, and a convex surface between the flat areas of the bore and the tip. In some forms the impeller further includes a concave surface between the convex surface and the tip to form an s-shape. A transition or inflection point can denote the change from convex to concave. The convex and/or concave surfaces can take any variety of forms such as constant radius sections and/or compound curves.
Integrally geared centrifugal compressor systems are described that include eccentric cartridges that house bearings and seals to maintain rotor concentricity for a variety of pinons integrated in a fixed gearbox design to provide multiple impeller speeds with a single gearbox design. In an aspect, a system includes, but is not limited to, a pinion configured to be rotated by a bull gear about a rotational axis; a rotor coupled to the pinion; and an eccentric cartridge configured to house a bearing assembly through which the rotor extends to support rotation of the rotor, the eccentric cartridge having an outer surface and an inner surface, wherein the inner surface is eccentric relative to the outer surface to align the rotational axis with a center axis of the bearing assembly.
A compressor system can include a lubricant injection system useful to supply lubricant to an airend. The compressor system can include a variable lubricant flow valve which can be regulated by a controller on the basis of operating conditions of the compressor system. In one form the compressor system also includes an oil separator and/or an oil cooler with or without a thermal control valve. The controller can have one or more modes of operation, including a mode in which the controller regulates the flow of lubricant to the airend to increase an internal flow area of the valve when the airend is operated at an unloaded or loaded condition. In some forms the controller can regulate the lubricant flow valve and/or the thermal control valve and/or the lubricant cooler.
F04C 18/16 - Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
F04C 23/00 - Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluidsPumping installations specially adapted for elastic fluidsMulti-stage pumps specially adapted for elastic fluids
F04C 28/06 - Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
F04C 29/00 - Component parts, details, or accessories, of pumps or pumping installations specially adapted for elastic fluids, not provided for in groups
A fluid compressor system configured to supply a compressed working fluid including at least a first air-end and a second air-end, a first and second intercooler, and a coolant circulation system having at least one throttle valve. The first and second intercoolers are configured to cool the compressed working fluid delivered by the first and second air-ends of the fluid compressor system, respectively. The coolant circulation system includes a coolant supplying header and a coolant collecting header, where the coolant supplying header supplies a coolant to the first intercooler and the second intercooler, and the coolant collecting header collects the coolant from the first intercooler and the second intercooler. The at least one throttle valve regulates a coolant flow discharged by one of the first intercooler or the second intercooler prior to entering the coolant collecting header.
A compressor is disclosed which can include a first stage and a second stage. In one form the compressor includes contact cooled compressor stages. The compressor can include a rod useful to inject a lubricant for purposes of cooling/lubricating/sealing the rotating components of the compressor. In one form the rod is an elongate rod with openings which permit a lubricant such as oil to be injected. The injected oil can be atomized via the openings. The rod can be positioned in the interstage space between the first and second stages, and can include a variety of openings.
F04C 23/00 - Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluidsPumping installations specially adapted for elastic fluidsMulti-stage pumps specially adapted for elastic fluids
F04C 29/00 - Component parts, details, or accessories, of pumps or pumping installations specially adapted for elastic fluids, not provided for in groups
A fluid compressor system having a pneumatic inlet/blowdown valve assembly that utilizes pneumatic pressure and vacuum available in the fluid compressor system for the actuation of an inlet valve and a blowdown valve. The actuation of the inlet valve and the blowdown valve is synchronized via a piston-cylinder actuator having a first piston and a second piston axially connected. The pneumatic blowdown/inlet valve assembly uses a first stage vacuum pressure to actuate the first piston and the second piston from an idle state where the inlet valve is closed to stop a flow of working fluid into the fluid compressor system and the blowdown valve is open to depressurize the fluid compressor system to an actuated state where the inlet valve is open to allow the flow of working fluid into a first airend and the blowdown valve is closed to allow a pressure buildup in the fluid compressor system.
G05D 16/20 - Control of fluid pressure characterised by the use of electric means
F15B 15/14 - Fluid-actuated devices for displacing a member from one position to anotherGearing associated therewith characterised by the construction of the motor unit of the straight-cylinder type
A diaphragm structured for use in a diaphragm pump useful to pump a working fluid includes a first non-planar layer and a second non-planar layer. The second non-planar layer is independent from the first non-planar layer, but engaged to the first non-planar layer so that the first non-planar layer and the second non-planar layer form a closed space therebetween and travel together while flexing in an intake direction or a discharge direction within a pumping assembly of a diaphragm pump.
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Testing kit comprised of a calibrated flowmeter, air filters for industrial and domestic use, namely, air filters for nitrogen generators, flexible plastic tubing, and sampling instructions for checking air quality before it enters a nitrogen generator Technical air quality monitoring services
67.
Application-targeted light on powered ratchet or right-angle power tool
A power tool having a handle extending along a longitudinal axis, wherein the handle is configured to house a motor. A ratchet head is connected to a first end of the handle. The ratchet head supports an output shaft having a drive square or bit that is driven by the motor. The ratchet wrench includes an application-targeted lighting system disposed around a periphery of the handle that illuminates the ratchet head and a workpiece below the output shaft. The application-targeted lighting system may include an array of Chip-On-Board LED lights. The application-targeted lighting system illuminates the workspace in applications where socket extenders and/or deep sockets are used with the ratchet wrench.
A power tool having a handle extending along a longitudinal axis, wherein the handle is configured to house a motor. A ratchet head is connected to a first end of the handle. The ratchet head supports an output shaft having a drive square or bit that is driven by the motor. The ratchet wrench includes an application-targeted lighting system disposed around a periphery of the handle that illuminates the ratchet head and a workpiece below the output shaft. The application-targeted lighting system may include an array of Chip-On-Board LED lights. The application-targeted lighting system illuminates the workspace in applications where socket extenders and/or deep sockets are used with the ratchet wrench.
A dynamic compressor includes an impeller having impeller vanes disposed around a hub, a shroud, and a diffuser having a shroud surface adjacent to the shroud and a hub surface adjacent to the hub, wherein the diffuser is circumferentially disposed around the impeller. The diffuser includes a plurality of diffuser vanes extending from the hub surface to the shroud surface, each having a vane leading edge and a vane trailing edge. The diffuser includes a centrifugal acceleration stabilizer ring formed in the shroud surface located in a vaneless region defined between an impeller trailing edge and the vane leading edge. The centrifugal acceleration stabilizer ring stabilizes the flow of the fluid by changing the circumferentially-flowing high velocity fluid flow exiting the impeller into a radially-flowing high velocity fluid flow before entering the diffuser, improving the efficiency of the dynamic compressor.
The present disclosure is directed to a screw compressor system having a compressor housing with a pair of screw rotors rotatably supported within a compression chamber. Lubricant is injected into a compression chamber at a first volume ratio and at a second volume ratio greater than the first volume ratio to increase the sealing and lubrication between the screw rotors and rotor bores in the compressor housing as well as to increase heat transfer from a compressed working fluid in the compression chamber.
F04C 18/16 - Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
F04C 29/00 - Component parts, details, or accessories, of pumps or pumping installations specially adapted for elastic fluids, not provided for in groups
Systems and methods form induction rotors by performing isostatic pressing (HIP) to weld clad to a shaft, which allows for scaling the manufacturing of solid steel rotors, as compared to conventional techniques. In examples, the rotors are designed for high-speed motors and may include recessed short circuit rings and/or end rings. An exemplary process molds an alloy powder into cladding such that heretofore unachievable rotor designs are achievable according to systems and methods described herein. In examples, a thin source-layer is introduced to welding zones, thereby enriching and strengthening the resulting joint at welding zones. The source-layer may be introduced by adding an intermediate layer comprising the source material between the materials being welded. The reduced alloy-depletion welding disclosed herein strengthens the welding area joints and provides for the manufacture of component designs, which were previously unachievable due to alloy-depletion weaknesses and environmental constraints.
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
B22F 7/08 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
A dynamic compressor includes an impeller having impeller vanes disposed around a hub, a shroud, and a diffuser having a shroud surface adjacent to the shroud and a hub surface adjacent to the hub, wherein the diffuser is circumferentially disposed around the impeller. The diffuser includes a plurality of diffuser vanes extending from the hub surface to the shroud surface, each having a vane leading edge and a vane trailing edge. The diffuser includes a centrifugal acceleration stabilizer ring formed in the shroud surface located in a vaneless region defined between an impeller trailing edge and the vane leading edge. The centrifugal acceleration stabilizer ring stabilizes the flow of the fluid by changing the circumferentially-flowing high velocity fluid flow exiting the impeller into a radially-flowing high velocity fluid flow before entering the diffuser, improving the efficiency of the dynamic compressor.
A compressed air drying system is provided for removing moisture from compressed air. The dryer operates in two modes in response to the demand for compressed air. In a first mode of operation, a refrigeration compressor runs continuously and the speed of a condenser fan is varied to maintain a constant cooling temperature. In a second mode of operation, the refrigeration compressor runs intermittently between on and off periods. As result, the cooling temperature fluctuates during the second mode of operation.
The present disclosure is directed to a dryer system for drying compressed gas discharged from a compressor. The dryer system includes a refrigeration drying system operable for removing moisture from the compressed gas and a desiccant drying system with a desiccant wheel located in series downstream of the refrigeration drying system operable for removing additional moisture from the compressed gas.
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
B01D 53/06 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents
F24F 3/14 - Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatmentApparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidificationAir-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatmentApparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by dehumidification
76.
Systems and methods for sequencing operation of compressed air dryers
Compressed air dryer systems are described. In an aspect, a system includes, but is not limited to, a plurality of dryer modules and a controller operable to regulate a run-time of each of the plurality of dryer modules. Each dryer module is configured to direct a portion of cooling medium past a stream of compressed air. Each dryer module includes a temperature sensor in thermal communication with the portion of cooling medium, and a chiller configured to reduce a temperature of the portion of cooling medium based on the sensed temperature and a temperature set-point. The controller communicatively is coupled with the plurality of dryer modules and operable to monitor a plurality of run-times. Each run-time is associated with a corresponding dryer module. The controller is further operable to direct operation of each dryer module based on its run-time by modifying the temperature set-point of the dryer module.
An air drying unit for compressed air systems is provided. The air drying unit has a precooler/reheater, a main cooler and a moisture separator. Incoming air is cooled to cause moisture within the compressed air to condense, which is then separated to dry the compressed air. The precooler/reheater, main cooler and moisture separator are designed as an integral unit that does not require pipes to connect the components together. Instead, compressed air flows through the sealed unit through passages therein between the precooler/reheater, main cooler and moisture separator.
A filter for compressed air systems is provided. The filter includes a filter housing with a filter therein between an air inlet and an air outlet. Compressed air flowing between the air inlet and the air outlet passes through the filter housing and the filter element. A base is removably fastened to the filter housing which may be separated from the filter housing to allow the filter element to be removed and replaced.
B01D 46/00 - Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
B01D 46/24 - Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
B01D 46/42 - Auxiliary equipment or operation thereof
B01D 46/60 - Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in parallel arranged concentrically or coaxially
A hydrodynamic bearing in the form of a flex pad bearing includes configurations structured to change a bearing characteristic. One form of the bearing includes a nonlinear back wall that includes a circular arc and a transition, where the back wall extends radially outward of a ligament. The bearing can include an opening for the deposit of a weighted mass, wherein the opening can threadingly receive a threaded weighted mass. In one form a sidewall that includes the back wall segment can have an average outer radius which determines a thickness of the flex pads.
An impact tool is provided with vibration isolators to reduce vibrations felt by the operator gripping the handle of the tool. The impact tool has a hammer and an anvil that impact against each other during use. The impacts create undesirable vibrations in the tool housing and noise in the work area. The isolators are useful in minimizing such vibrations and noise.
B25B 21/02 - Portable power-driven screw or nut setting or loosening toolsAttachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
A control system for a compressed air system is configured to implement an “away mode” of operation that provides for a temporary override of the operation of the compressed air system, which can be easily enabled and disabled. During a period of down time, when the away mode of operation is enabled, the control system causes the compressed air system to operate in a limited capacity (e.g., maintaining limited system pressure, flow, higher dewpoint/humidity level, etc.) to minimize energy usage and limit unnecessary wear on system equipment without shutting down the compressed air system.
An active magnetic bearing apparatus for supporting a rotor of a rotary machine comprises an axial magnetic bearing unit and a radial magnetic bearing unit mounted directly to one another. One of the axial magnetic bearing unit and the radial magnetic bearing unit is mounted to a support for attachment to a housing of the rotary machine.
F16C 32/04 - Bearings not otherwise provided for using magnetic or electric supporting means
H02K 7/09 - Structural association with bearings with magnetic bearings
H02K 9/16 - Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the cooling medium circulates through ducts or tubes within the casing
H02K 9/18 - Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the external part of the closed circuit comprises a heat exchanger structurally associated with the machine casing
H02K 11/01 - Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields
H02K 11/21 - Devices for sensing speed or position, or actuated thereby
impact wrenches; air operated power tools, namely, impact wrenches; electric power tools, namely, cordless electric impact wrenches; parts and accessories for the aforementioned goods
impact wrenches; air operated power tools, namely, impact wrenches; electric power tools, namely, cordless electric impact wrenches; parts and accessories for the aforementioned goods
Integrally geared centrifugal compressor systems are described that include eccentric cartridges that house bearings and seals to maintain rotor concentricity for a variety of pinons integrated in a fixed gearbox design to provide multiple impeller speeds with a single gearbox design. In an aspect, a system includes, but is not limited to, a pinion configured to be rotated by a bull gear about a rotational axis; a rotor coupled to the pinion; and an eccentric cartridge configured to house a bearing assembly through which the rotor extends to support rotation of the rotor, the eccentric cartridge having an outer surface and an inner surface, wherein the inner surface is eccentric relative to the outer surface to align the rotational axis with a center axis of the bearing assembly.
A portable shippable automated calibration system for high torque power tools is disclosed. The system includes a self-contained highly durable and shippable container that may comprise a power source, central processor, visual user interface, mechanical interface for coupling with power tools to be calibrated, communications systems for communicating with a power tool being calibrated and/or with on-site or cloud based data systems. The system may be delivered to sites desiring on-site power tool calibration, tools are calibrated and updated calibration factors are automatically uploaded into the calibrated tool and a calibration certificate is published with the particulars of the calibration completion.
G05B 19/401 - Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
B25B 23/147 - Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
G01L 3/00 - Measuring torque, work, mechanical power, or mechanical efficiency, in general
A rotary power tool assembly including a hammercase an axis extending between a forward end and a rearward end, a drive mechanism housed within the hammercase, and a hammer driven by the drive mechanism to apply a rotational impact force on an anvil. The anvil includes an output shaft rotatable about the axis, a plurality of anvil jaws extending from the axis, and a flange fixedly connected to an end of the output shaft and extending radially from the axis, wherein the flange supports the plurality of anvil jaws, the flange extending over the plurality of anvil jaws. The anvil includes a magnet attached to the flange opposite to the plurality of anvil jaws. An anvil angle sensor is configured to read and interpret magnetic flux changes of the magnet and determine the position of the anvil rotating about the axis.
A turbocharged compressor system using an Organic Rankine Cycle system to recover waste heat from a compression process. The Organic Rankine Cycle system circulates an organic fluid through an evaporator, where the organic fluid vaporizes and is expanded in a turbine section of a turbocharger to drive a compressor section of the turbocharger. The organic fluid vapor is condensed in a condenser and is pumped to the evaporator once again for recirculation. The compressor section of the turbocharger pre-compresses a working fluid before entering an airend in a compression system. As the working fluid exits the airend, it may be delivered to the evaporator, where the waste heat from the working fluid evaporates the organic fluid flowing in the Organic Rankine Cycle system. The working fluid may also be circulated between intercoolers in multi-stage compressor systems.
01 - Chemical and biological materials for industrial, scientific and agricultural use
04 - Industrial oils and greases; lubricants; fuels
Goods & Services
(1) Coolants
(2) Oil based liquid coolant for use with air compressors;
(3) Industrial lubricants; industrial lubricating oils
(4) Lubricants for air compressors;
A compressor system includes a compression module having an inlet for receiving air; and a filter housing in fluid communication with the compression module. The filter housing is constructed to house a filter, the filter having a sealing feature disposed at a first end of the filter and having an engagement feature disposed at a second end of the filter opposite the first end. The filter housing includes a trap door constructed to contact the engagement feature, and constructed to drive the engagement feature in a direction parallel to an axis of the filter toward the sealing feature and urge the sealing feature into sealing engagement with the filter housing.
A compressor system includes an electric motor having a rotatable output shaft extending from either end thereof. The compressor system further includes multiple compression stages fluidly coupled to one another in series and mechanically connected to the output shaft. The first compressor stage includes two split impellers with each impeller discharging approximately one half of the fluid flow at a desired pressure to the second compressor stage.
A position sensor includes a plurality of E-shaped ferromagnetic cores arranged to define a circular opening therethrough to receive a shaft. Each E-shaped ferromagnetic core has a plurality of teeth, wherein adjacent E-shaped ferromagnetic cores of the arranged plurality of E-shaped ferromagnetic cores have an overlapping tooth. The position sensor further includes a frame surrounding the arranged plurality of E-shaped ferromagnetic cores, with the E-shaped ferromagnetic cores coupled to the frame.
F16C 32/04 - Bearings not otherwise provided for using magnetic or electric supporting means
H02K 3/52 - Fastening salient pole windings or connections thereto
H02K 7/09 - Structural association with bearings with magnetic bearings
H02K 1/30 - Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
G01D 5/20 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
A compressor system can include a lubricant injection system useful to supply lubricant to an airend. The compressor system can include a variable lubricant flow valve which can be regulated by a controller on the basis of operating conditions of the compressor system. In one form the compressor system also includes an oil separator and/or an oil cooler with or without a them al control valve. The controller can have one or more modes of operation, including a mode in which the controller regulates the flow of lubricant to the airend to increase an internal flow area of the valve when the airend is operated at an unloaded or loaded condition. In some forms the controller can regulate the lubricant flow valve and/or the thermal control valve and/or the lubricant cooler.
F04C 18/16 - Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
F04C 29/00 - Component parts, details, or accessories, of pumps or pumping installations specially adapted for elastic fluids, not provided for in groups
F04C 28/06 - Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
F04C 23/00 - Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluidsPumping installations specially adapted for elastic fluidsMulti-stage pumps specially adapted for elastic fluids
A turbocharged compressor system using an Organic Rankine Cycle system to recover waste heat from a compression process. The Organic Rankine Cycle system circulates an organic fluid through an evaporator, where the organic fluid vaporizes and is expanded in a turbine section of a turbocharger to drive a compressor section of the turbocharger. The organic fluid vapor is condensed in a condenser and is pumped to the evaporator once again for recirculation. The compressor section of the turbocharger pre-compresses a working fluid before entering an airend in a compression system. As the working fluid exits the airend, it may be delivered to the evaporator, where the waste heat from the working fluid evaporates the organic fluid flowing in the Organic Rankine Cycle system. The working fluid may also be circulated between intercoolers in multi-stage compressor systems.
A centrifugal compressor impeller includes a plurality of blades on a front side that extend from a first axial side to an outer radial end of the impeller. The centrifugal impeller includes a back side having a nonlinear backwall. The backwall can include a flat area hear a bore of impeller, a flat area near a tip of the impeller, and a convex surface between the flat areas of the bore and the tip. In some forms the impeller further includes a concave surface between the convex surface and the tip to form an s-shape. A transition or inflection point can denote the change from convex to concave. The convex and/or concave surfaces can take any variety of forms such as constant radius sections and/or compound curves.
A diaphragm pump having a crankshaft that is rotatable about a rotational axis and coupled to a piston. The piston is reciprocally displaceable within a piston cylinder along an axis of motion between suction and discharge strokes. A diaphragm housing coupled to the piston cylinder at least partially defines a pumping chamber through which fluid is pumped as the piston reciprocates. The axis of motion, which intersects a connection between the piston and the connecting rod, may not intersect the rotational axis of the crankshaft such that, relative to an arrangement in which the axis of motion does intersect the rotational axis, a peak magnitude of piston side load forces during the discharge stroke is reduced and a peak magnitude of piston side load forces during the suction stroke is increased so as to attain an improved balance between the peak magnitudes of piston side load forces of the discharge and suction strokes.
F04B 15/02 - Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
F04C 2/07 - Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them having crankshaft-and-connecting-rod type drive
F04C 11/00 - Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston typePumping installations
F04B 43/02 - Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms