ASSOCIATION FOR THE ADVANCEMENT OF TISSUE ENGINEERING AND CELL BASED TECHNOLOGIES & THERAPIES (A4TEC) ASSOCIAÇÃO (Portugal)
MOSSAKOWSKI MEDICAL RESEARCH CENTRE POLISH ACADEMY OF SCIENCES (Poland)
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE (Poland)
FMC BIOPOLYMER AS (Norway)
Inventor
Antunes Correia De Oliveira, Joaquim Miguel
Araújo Vieira, Sílvia Cristina
Moreira Pinheiro Dos Santos Oliveira, Maria Eduarda
Da Silva Correia De Oliveira, Joana Catarina
Gonçalves Dos Reis, Rui Luís
Walczak, Piotr
Malysz-Cymborska, Izabela
Golubczyk, Dominika
Kalkowski, Lukasz
Majchrzak, Malgorzata
Janowski, Miroslaw
Strymecka, Paulina Natalia
Stanaszek, Luiza
Lukomska, Barbara
Svendsen, Terje
Asdahl, Lise Cathrine
Myhr Sætrang, Henriette Elisabeth
Abstract
The present disclosure relates to biocompatible ionically crosslinked hydrogel polymers comprising polysaccharides such as alginate, hyaluronic acid, gellan gum or its derivatives and manganese ions for use in medicine, in particular for imaging purposes. Therefore, the hydrogel present disclosure is useful for spatio-temporal control of cells/drugs delivery in a wide range of therapeutic applications.
A61K 49/18 - Nuclear magnetic resonance [NMR] contrast preparationsMagnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
A61K 47/69 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additivesTargeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
A61K 9/00 - Medicinal preparations characterised by special physical form
Kits and compositions for producing an alginate gel are disclosed. The kits and compositions comprise soluble alginate and insoluble alginate/gelling ion particles. Methods for dispensing a self-gelling alginate dispersion are disclosed. The methods comprise forming a dispersion of insoluble alginate/gelling ion particles in a solution containing soluble alginate, and dispensing the dispersion whereby the dispersion forms an alginate gel matrix. The methods may include dispensing the dispersion into the body of an individual. An alginate gel having a thickness of greater than 5 mm and a homogenous alginate matrix network and homogenous alginate gels free of one or more of: sulfates citrates, phosphates, lactatates, EDTA or lipids are disclosed. Implantable devices comprising a homogenous alginate gel coating are disclosed. Methods of improving the viability of pancreatic islets, or other cellular aggregates or tissue, following isolation and during storage and transport are disclosed.
A61K 31/715 - Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkagesDerivatives thereof, e.g. ethers, esters
Kits and compositions for producing an alginate gel are disclosed. The kits and compositions comprise soluble alginate and insoluble alginate/gelling ion particles. Methods for dispensing a self-gelling alginate dispersion are disclosed. The methods comprise forming a dispersion of insoluble alginate/gelling ion particles in a solution containing soluble alginate, and dispensing the dispersion whereby the dispersion forms an alginate gel matrix. The methods may include dispensing the dispersion into the body of an individual. An alginate gel having a thickness of greater than 5 mm and a homogenous alginate matrix network and homogenous alginate gels free of one or more of: sulfates citrates, phosphates, lactates, EDTA or lipids are disclosed. Implantable devices comprising a homogenous alginate gel coating are disclosed. Methods of improving the viability of pancreatic islets, or other cellular aggregates or tissue, following isolation and during storage and transport are disclosed.
Kits and compositions for producing an alginate gel are disclosed. The kits and compositions comprise soluble alginate and insoluble alginate/gelling ion particles. Methods for dispensing a self-gelling alginate dispersion are disclosed. The methods comprise forming a dispersion of insoluble alginate/gelling ion particles in a solution containing soluble alginate, and dispensing the dispersion whereby the dispersion forms an alginate gel matrix. The methods may include dispensing the dispersion into the body of an individual. An alginate gel having a thickness of greater than 5 mm and a homogenous alginate matrix network and homogenous alginate gels free of one or more of: sulfates citrates, phosphates, lactatates, EDTA or lipids are disclosed. Implantable devices comprising a homogenous alginate gel coating are disclosed. Methods of improving the viability of pancreatic islets, or other cellular aggregates or tissue, following isolation and during storage and transport are disclosed.
C07H 1/00 - Processes for the preparation of sugar derivatives
A61K 31/715 - Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkagesDerivatives thereof, e.g. ethers, esters
Low molecular weight low molecular weight chitosan oligomers were able to self- assemble siRNA into nanosized particles, provide protection against enzymatic degradation, and mediate gene silencing that is stable over a long period of time in vitro. The control of structural variables in formulating complexes of siRNA with low molecular weight chitosans provides an efficient alternative delivery system for siRNA in vitro and in vivo.
The present invention is directed to a hydrogel comprising an alginate having a low molecular weight (e.g., less than 75,000 Daltons), wherein the alginate is present in a high concentration (e.g., greater than 2.5% by weight of the hydrogel). The present invention is also directed to methods of making and using the hydrogel, as well as products containing the hydrogel.
A61K 47/36 - PolysaccharidesDerivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
A61K 9/00 - Medicinal preparations characterised by special physical form
A61K 33/00 - Medicinal preparations containing inorganic active ingredients
A61K 47/48 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
A61K 51/00 - Preparations containing radioactive substances for use in therapy or testing in vivo
A gastro-activated dietary fiber comprising an insoluble polysaccharide salt and use of the gastro-activated dietary fiber in ingestible products. The gastro- activated dietary fibers may include salts of biopolymers such as alginates, carrageenans and pectins that are insoluble in water and exhibit minimal or no swelling in water. The water swelling ratio of the gastro-activated dietary fiber may 15 or less. The gastro-activation of the dietary fiber may be induced by exposure to an acidic pH of 3 or less for at least 15 minutes. Ingestible compositions containing the gastro-activated dietary fiber solubilize and provide a viscosity increase in the digestive tract as a result of activation of the dietary fiber by natural excretions of the small intestine which induce gelation of the dietary fiber. Beneficial health effects are potentially obtained by the provision of dietary fiber in this manner, without the usual disadvantages of reduced palatability and poor mouthfeel that are associated with soluble fiber-containing ingestible compositions.
Biopolymer beads and hydrogels are useful in the remodeling, repair and reconstruction of the heart, as well as in modification of electrical conduction in the heart. Various types of beads are useful, including beads comprising a core of alginate polymers which may or may not be bonded to peptides; beads comprising a core in which peptides are dispersed with alginate polymers, and a chitosan film ionically bonded to available alginate polymers at the surface of the core; beads comprising a core in which peptides and chitosan derivates are dispersed with alginate polymers and form alginate-peptide complexes to which the chitosan derivatives are bonded; and beads comprising a core of chitosan polymers which may or may not be bonded to peptides. The heart may also be treated with a hydrogel agent comprising alginate polymers and peptides covalently bonded to the alginate polymers.
Compositions comprising biopolymers such as alginates and cell attachment peptides are disclosed. Compositions may optionally further comprise cells. Methods for repairing or treating a tissues and organs with such compositions and systems for providing such compositions to tissues and organs, and methods for delivering desired proteins to individual with such compositions and systems for providing such compositions are also disclosed. In vitro methods of culturing cells are also disclosed.
The present invention is directed to cellular devices comprising a collagen matrix, cell layer, and gelled alginate layer, processes for producing the devices, methods of implanting the devices, and methods of treatment thereof.
The invention provides a method of producing a gelled foam comprising the steps of: forming a dispersion by mixing i) a solution comprising a soluble polysaccharide and a plasticizer and adding a polysaccharide/gel-forming ion particles or ii) a soluble, preferably immediately soluble, polysaccharide, preferably an alginate, a polysaccharide /gel-forming ion particles, and adding a solvent, said dispersion (ii) further comprising a water soluble plasticizer to make the dispersion and then aerating the dispersion to form the foam. The foam may be inhomogeneous in structure which is useful in providing improved delivery of a component carried in the foam and in degradation.
C08J 9/12 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
The invention relates to composites comprising a polysaccharide gelled within pores of a foam, methods of preparation, and uses thereof, for example, in biomedical applications such as cell culture media and implants, controlled release delivery systems, food applications, industrial applications, and personal care applications such as cosmetic and oral hygiene. The composites of the present invention are simple to formulate using few steps and are useful for entrapping heat-sensitive components, such as cells, drugs, flavors or fragrances within the polysaccharide gel. In addition, the invention provides for a composite able to gently immobilize fragile components, such as living cells, without exposing such components to shear forces.
A61L 27/48 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
The invention relates to a method for forming a dried absorbent foam having an open pore network and pores by preparing an aqueous dispersion comprising an enzymatically biodegradable biopolymer and a foaming agent and optionally one or more of gel-forming ions, a plasticizer, a crosslinking agent and a pH modifier, forming, preparing or mixing a foam from the aqueous dispersion and drying the foam to form a dried foam containing open pores. Gelled composites made from the foams are also provided. The invention is particularly useful in providing foams and composites for use in biomedical applications and as an anti-adhesive in tissue regeneration and wound management.
A61L 27/48 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
A method for the administration of a composition that augments the acidity of gastric fluid such that intra-gastric gelation of the polysaccharide:acid soluble multivalent cation formulation is initiated independent of endogenous acid secretion. The composition includes: (a) at least one of a polysaccharide, modified polysaccharide, or polysaccharide salt, each capable of ionotropic gelation, (b) at least one source of multivalent cations capable of solubilization at an acidic pH, and (c) at least one acid component capable of providing a controlled release of protons sufficient to solubilize the multivalent cations. The composition is capable of hydrating in aqueous media and subsequently forming a gel in a stomach when ingested, which gel resists peristaltic forces and remains in the stomach for an extended time. Also disclosed are edible compositions including this composition, as well as methods of inducing a satiety effect and providing controlled release of various components employing the composition of the invention.
A23L 1/29 - Modifying nutritive qualities of foods; Dietetic products ( A23L 1/09 takes precedence;dietetic salt substitutes A23L 1/22)
A61K 31/715 - Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkagesDerivatives thereof, e.g. ethers, esters
A61K 9/00 - Medicinal preparations characterised by special physical form
15.
MEDICAL DEVICES COATED WITH A FAST DISSOLVING BIOCOMPATIBLE COATING
The present invention relates to a medical device comprising a biocompatible medical coating adhered thereto, wherein the coating comprises at least one of a non-crosslinked, water soluble salt of: (i) alginic acid, (ii) hyaluronic acid or (iii) chitosan, wherein the coating is readily dissolvable in at least one mammalian body fluid.
Kits and compositions for producing an alginate gel are disclosed. The kits and compositions comprise soluble alginate and insoluble alginate/gelling ion particles. Methods for dispensing a self-gelling alginate dispersion are disclosed. The methods comprise forming a dispersion of insoluble alginate/gelling ion particles in a solution containing soluble alginate, and dispensing the dispersion whereby the dispersion forms an alginate gel matrix. The methods may include dispensing the dispersion into the body of an individual. An alginate gel having a thickness of greater than 5 mm and a homogenous alginate matrix network and homogenous alginate gels free of one or more of: sulfates citrates, phosphates, lactatates, EDTA or lipids are disclosed. Implantable devices comprising a homogenous alginate gel coating are disclosed. Methods of improving the viability of pancreatic islets, or other cellular aggregates or tissue, following isolation and during storage and transport are disclosed.
A61K 31/715 - Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkagesDerivatives thereof, e.g. ethers, esters
Kits and compositions for producing an alginate gel are disclosed. The kits and compositions comprise soluble alginate and insoluble alginate/gelling ion particles. Methods for dispensing a self-gelling alginate dispersion are disclosed. The methods comprise forming a dispersion of insoluble alginate/gelling ion particles in a solution containing soluble alginate, and dispensing the dispersion whereby the dispersion forms an alginate gel matrix. The methods may include dispensing the dispersion into the body of an individual. An alginate gel having a thickness of greater than 5 mm and a homogenous alginate matrix network and homogenous alginate gels free of one or more of: sulfates citrates, phosphates, lactatates, EDTA or lipids are disclosed. Implantable devices comprising a homogenous alginate gel coating are disclosed. Methods of improving the viability of pancreatic islets, or other cellular aggregates or tissue, following isolation and during storage and transport are disclosed.
The present invention is directed to seamless capsules and methods for making seamless capsules having a high oil content. More specifically, the present invention is directed to seamless capsules, and methods for making seamless capsules, made from a process involving the steps of: (a) preparing an emulsion comprising oil, water, an emulsifier, and at least one of a water-soluble monovalent metal salt, polyvalent metal salt, and an acid, wherein said oil is present in an amount of at least 50% by weight of said emulsion; with the proviso that said emulsion does not contain marmelo mucilage; and (b) adding portions of said emulsion to an aqueous gelling bath comprised of at least one ionic polysaccharide, thereby encapsulating said portions of said emulsion in a polysaccharide gel membrane, and optionally (c) drying the resulting capsules by removing water. The capsule is, for example, an alignate gel. The capsules of the invention are suitable for a variety of applications, e.g. pharmaceutical, nutraceutical, veterinary, agricultural, cosmetic, or food applications.