Formulations and methods for stimulating the production from wells in nano-darcy shale formations. In one embodiment, the method includes injecting a treatment mixture containing a metal complexing agent into a nano-darcy shale formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the treatment mixture is pumped from the subsurface. This has been shown to stimulate well production in shale formations. Without being held to a particular theory it appears that the metal complexing agent is binding with naturally occurring metals in the shale formation, and particularly divalent metal ions, which are then extracted with the spent fluid. This removal of naturally occurring metals may be increasing the permeability of the formation in the contact region adjacent to the well, thereby causing the observed increased production.
In a well in a subterranean formation, treatment fluids for time-released iron control are utilized. These treatment fluids contain a time-released form of a complexing agent or reducing agent, wherein the agent forms a soluble product with iron. The time-released form prevents loss of the agent prior to delivery to the desired site and at the desired time(s). Methods for controlling iron in a well in a subterranean formation utilize these treatment fluids containing a time-released form of a complexing agent or reducing agent and these methods create soluble products when the agent interacts with the iron to control the iron from the formation and/or well.
In a well in a subterranean formation, treatment fluids for time-released iron control are utilized. These treatment fluids contain a time-released form of a complexing agent, wherein the complexing agent forms an insoluble complex with iron. The time-released form prevents loss of the agent prior to delivery to the desired site and at the desired time(s). Methods for controlling iron in a well in a subterranean formation utilize these treatment fluids containing a time-released form of a complexing agent and these methods create insoluble complexes of the agent with the iron to control the iron from the formation and/or well.
In a well in a subterranean formation, treatment fluids for time-released iron control are utilized. These treatment fluids contain a time-released form of a complexing agent, wherein the complexing agent forms an insoluble complex with iron. The time-released form prevents loss of the agent prior to delivery to the desired site and at the desired time(s). Methods for controlling iron in a well in a subterranean formation utilize these treatment fluids containing a time-released form of a complexing agent and these methods create insoluble complexes of the agent with the iron to control the iron from the formation and/or well.
In a well in a subterranean formation, treatment fluids for time-released iron control are utilized. These treatment fluids contain a time-released form of a complexing agent or reducing agent, wherein the agent forms a soluble product with iron. The time-released form prevents loss of the agent prior to delivery to the desired site and at the desired time(s). Methods for controlling iron in a well in a subterranean formation utilize these treatment fluids containing a time-released form of a complexing agent or reducing agent and these methods create soluble products when the agent interacts with the iron to control the iron from the formation and/or well.
Formulations and methods for stimulating the production from wells in nano-darcy shale formations. In one embodiment, the method includes injecting a treatment mixture containing a metal complexing agent into a nano-darcy shale formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the treatment mixture is pumped from the subsurface. This has been shown to stimulate well production in shale formations. Without being held to a particular theory it appears that the metal complexing agent is binding with naturally occurring metals in the shale formation, and particularly divalent metal ions, which are then extracted with the spent fluid. This removal of naturally occurring metals may be increasing the permeability of the formation in the contact region adjacent to the well, thereby causing the observed increased production.
In a well in a subterranean formation, treatment fluids for time-released iron control are utilized. These treatment fluids contain a time-released form of a complexing agent, wherein the complexing agent forms an insoluble complex with iron. The time-released form prevents loss of the agent prior to delivery to the desired site and at the desired time(s). Methods for controlling iron in a well in a subterranean formation utilize these treatment fluids containing a time-released form of a complexing agent and these methods create insoluble complexes of the agent with the iron to control the iron from the formation and/or well.
In a well in a subterranean formation, treatment fluids for time-released iron control are utilized. These treatment fluids contain a time-released form of a complexing agent or reducing agent, wherein the agent forms a soluble product with iron. The time-released form prevents loss of the agent prior to delivery to the desired site and at the desired time(s). Methods for controlling iron in a well in a subterranean formation utilize these treatment fluids containing a time-released form of a complexing agent or reducing agent and these methods create soluble products when the agent interacts with the iron to control the iron from the formation and/or well.
In a well in a subterranean formation, treatment fluids for time-released iron control are utilized. These treatment fluids contain a time-released form of a complexing agent or reducing agent, wherein the agent forms a soluble product with iron. The time-released form prevents loss of the agent prior to delivery to the desired site and at the desired time(s). Methods for controlling iron in a well in a subterranean formation utilize these treatment fluids containing a time-released form of a complexing agent or reducing agent and these methods create soluble products when the agent interacts with the iron to control the iron from the formation and/or well.
C09K 8/528 - Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning inorganic depositions, e.g. sulfates or carbonates
C09K 8/536 - Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material
C09K 8/70 - Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
10.
Iron control as part of a well treatment using time-released agents
In a well in a subterranean formation, treatment fluids for time-released iron control are utilized. These treatment fluids contain a time-released form of a complexing agent, wherein the complexing agent forms an insoluble complex with iron. The time-released form prevents loss of the agent prior to delivery to the desired site and at the desired time(s). Methods for controlling iron in a well in a subterranean formation utilize these treatment fluids containing a time-released form of a complexing agent and these methods create insoluble complexes of the agent with the iron to control the iron from the formation and/or well.
In a well in a subterranean formation, treatment fluids for time-released iron control are utilized. These treatment fluids contain a time-released form of a complexing agent or reducing agent, wherein the agent forms a soluble product with iron. The time-released form prevents loss of the agent prior to delivery to the desired site and at the desired time(s). Methods for controlling iron in a well in a subterranean formation utilize these treatment fluids containing a time-released form of a complexing agent or reducing agent and these methods create soluble products when the agent interacts with the iron to control the iron from the formation and/or well.
In a well in a subterranean formation, treatment fluids for time-released iron control are utilized. These treatment fluids contain a time-released form of a complexing agent, wherein the complexing agent forms an insoluble complex with iron. The time-released form prevents loss of the agent prior to delivery to the desired site and at the desired time(s). Methods for controlling iron in a well in a subterranean formation utilize these treatment fluids containing a time-released form of a complexing agent and these methods create insoluble complexes of the agent with the iron to control the iron from the formation and/or well.
C09K 8/528 - Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning inorganic depositions, e.g. sulfates or carbonates
C09K 8/536 - Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material
C09K 8/70 - Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
13.
METHOD FOR REMEDIATION OF SUBTERRANEAN-FORMED METAL-POLYMER COMPLEXES USING PERACETIC ACID
This disclosure describes methods for remediating subterranean-formed metal-polymer complexes in wells in subterranean formations. In particular, these methods utilize a peracetic acid remediation mixture. The peracetic acid remediation mixture is injected into a subterranean formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the peracetic acid remediation mixture is pumped from the subsurface. This has been shown to degrade, and thus remediate, polymer-containing, subterranean-formed metal-polymer complexes in shale formations.
E21B 37/06 - Methods or apparatus for cleaning boreholes or wells using chemical means for preventing or limiting the deposition of paraffins or like substances
This disclosure describes methods for remediating subterranean-formed metal-polymer complexes in wells in subterranean formations. In particular, these methods utilize a peracetic acid remediation mixture. The peracetic acid remediation mixture is injected into a subterranean formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the peracetic acid remediation mixture is pumped from the subsurface. This has been shown to degrade, and thus remediate, polymer-containing, subterranean-formed metal-polymer complexes in shale formations.
This disclosure describes methods for remediating subterranean-formed metal-polymer complexes in wells in subterranean formations. In particular, these methods utilize a peracetic acid remediation mixture. The peracetic acid remediation mixture is injected into a subterranean formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the peracetic acid remediation mixture is pumped from the subsurface. This has been shown to degrade, and thus remediate, polymer-containing, subterranean-formed metal-polymer complexes in shale formations.
Formulations and methods for stimulating the production from wells in nano-darcy shale formations. In one embodiment, the method includes injecting a treatment mixture containing a metal complexing agent into a nano-darcy shale formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the treatment mixture is pumped from the subsurface. This has been shown to stimulate well production in shale formations. Without being held to a particular theory it appears that the metal complexing agent is binding with naturally occurring metals in the shale formation, and particularly divalent metal ions, which are then extracted with the spent fluid. This removal of naturally occurring metals may be increasing the permeability of the formation in the contact region adjacent to the well, thereby causing the observed increased production.
Formulations and methods for remediating subterranean-formed metal-polymer complexes in wells in subterranean formations are described. In one embodiment, the method includes injecting a metal-polymer complex remediation mixture containing a metal complexing agent into a subterranean formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the metal-polymer complex remediation mixture is pumped from the subsurface. This has been shown to remediate polymer-containing, subterranean-formed metal-polymer complexes in shale formations. Without being held to a particular theory, it appears that the metal complexing agent is forming metal complexes with the metals in the complexes, and particularly divalent metal ions. This removal of naturally occurring metals may be un-crosslinking and causing the metal-polymer complexes to go into solution, thereby removing the blockages caused by the metal-polymer complexes.
Formulations and methods for stimulating the production from wells in nano-darcy shale formations are described. In one embodiment, the method includes injecting a treatment mixture containing a metal complexing agent into a nano-darcy shale formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the treatment mixture is pumped from the subsurface. This has been shown to stimulate well production in shale formations. Without being held to a particular theory it appears that the metal complexing agent is binding with naturally occurring metals in the shale formation, and particularly divalent metal ions, which are then extracted with the spent fluid. This removal of naturally occurring metals may be increasing the permeability of the formation in the contact region adjacent to the well, thereby causing the observed increased production.
In a slick-water fracturing operation, a composition is used to prevent the interaction between a polymer in a water-based fracturing fluid and naturally-occurring metal ions. The composition includes a metal-complexing agent, such as a chelating agent. The chelating agent can also be biodegradable and is citric acid in embodiments. The metal-complexing agent can be coated with one or two coatings to create a time-released form. The time-released form prevents loss of the agent prior to delivery at the shale.
C09K 8/70 - Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
C09K 8/88 - Compositions based on water or polar solvents containing organic compounds macromolecular compounds
C09K 8/92 - Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
21.
SLICK-WATER FRACTURING USING TIME RELEASE METAL-COMPLEXING AGENT
In a slick-water fracturing operation, a composition is used to prevent the interaction between a polymer in a water-based fracturing fluid and naturally-occurring metal ions. The composition includes a metal-complexing agent, such as a chelating agent. The chelating agent can also be biodegradable and is citric acid in embodiments. The metal-complexing agent can be coated with one or two coatings to create a time-released form. The time -released form prevents loss of the agent prior to delivery at the shale.
In a slick-water fracturing operation, a composition is used to prevent the interaction between a polymer in a water-based fracturing fluid and naturally-occurring metal ions. The composition includes a metal-complexing agent, such as a chelating agent. The chelating agent can also be biodegradable and is citric acid in embodiments. The metal-complexing agent can be coated with one or two coatings to create a time-released form. The time -released form prevents loss of the agent prior to delivery at the shale.
This disclosure describes formulations and methods for stimulating the production from wells in nano-darcy shale formations. In one embodiment, the method includes injecting a treatment mixture containing a metal complexing agent into a nano-darcy shale formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the treatment mixture is pumped from the subsurface. This has been shown to stimulate well production in shale formations. Without being held to a particular theory it appears that the metal complexing agent is binding with naturally occurring metals in the shale formation, and particularly divalent metal ions, which are then extracted with the spent fluid. This removal of naturally occurring metals may be increasing the permeability of the formation in the contact region adjacent to the well, thereby causing the observed increased production.
This disclosure describes formulations and methods for stimulating the production from wells in nano-darcy shale formations. In one embodiment, the method includes injecting a treatment mixture containing a metal complexing agent into a nano-darcy shale formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the treatment mixture is pumped from the subsurface. This has been shown to stimulate well production in shale formations. Without being held to a particular theory it appears that the metal complexing agent is binding with naturally occurring metals in the shale formation, and particularly divalent metal ions, which are then extracted with the spent fluid. This removal of naturally occurring metals may be increasing the permeability of the formation in the contact region adjacent to the well, thereby causing the observed increased production.
Formulations and methods for stimulating the production from wells in nano-darcy shale formations. In one embodiment, the method includes injecting a treatment mixture containing a metal complexing agent into a nano-darcy shale formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the treatment mixture is pumped from the subsurface. This has been shown to stimulate well production in shale formations. Without being held to a particular theory it appears that the metal complexing agent is binding with naturally occurring metals in the shale formation, and particularly divalent metal ions, which are then extracted with the spent fluid. This removal of naturally occurring metals may be increasing the permeability of the formation in the contact region adjacent to the well, thereby causing the observed increased production.
Composition and method for treating fluids with select facultative organisms and/or nutrients. At least one facultative organism is selected and added to a fluid to stimulate/facilitate biological remediation of the fluid. In one embodiment, the select facultative organisms are put into frac pits/ponds containing frac water to inhibit the sulfate reducing bacteria in the frac water. In another embodiment, at least one facultative organism and nutrients are selected and added to a fluid.
This disclosure describes formulations and methods for remediating subterranean-formed metal-polymer complexes in wells in subterranean formations. In one embodiment, the method includes injecting a metal-polymer complex remediation mixture containing a metal complexing agent into a subterranean formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the metal-polymer complex remediation mixture is pumped from the subsurface. This has been shown to remediate polymer-containing, subterranean-formed metal-polymer complexes in shale formations. Without being held to a particular theory it appears that the metal complexing agent is forming metal complexes with the metals in the complexes, and particularly divalent metal ions. This removal of naturally occurring metals may be un-crosslinking and causing the metal-polymer complexes to go into solution, thereby removing the blockages caused by the metal-polymer complexes.
This disclosure describes formulations and methods for remediating subterranean-formed metal-polymer complexes in wells in subterranean formations. In one embodiment, the method includes injecting a metal-polymer complex remediation mixture containing a metal complexing agent into a subterranean formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the metal-polymer complex remediation mixture is pumped from the subsurface. This has been shown to remediate polymer-containing, subterranean-formed metal-polymer complexes in shale formations. Without being held to a particular theory it appears that the metal complexing agent is forming metal complexes with the metals in the complexes, and particularly divalent metal ions. This removal of naturally occurring metals may be un-crosslinking and causing the metal-polymer complexes to go into solution, thereby removing the blockages caused by the metal-polymer complexes.
This disclosure describes formulations and methods for remediating subterranean-formed metal-polymer complexes in wells in subterranean formations. In one embodiment, the method includes injecting a metal-polymer complex remediation mixture containing a metal complexing agent into a subterranean formation adjacent to a well at a pressure below the fracture pressure of the formation. A sufficient contact time is allowed and then the metal-polymer complex remediation mixture is pumped from the subsurface. This has been shown to remediate polymer-containing, subterranean-formed metal-polymer complexes in shale formations. Without being held to a particular theory it appears that the metal complexing agent is forming metal complexes with the metals in the complexes, and particularly divalent metal ions. This removal of naturally occurring metals may be un-crosslinking and causing the metal-polymer complexes to go into solution, thereby removing the blockages caused by the metal-polymer complexes.