A method for the production of a poppet valve which is armoured in at least the region of a valve seat, comprising providing a substantially cylindrical or cup-shaped semi-finished product produced from a valve steel, which is coated with an armouring material, whereupon the coated semi-finished product is formed into an armoured poppet valve.
A valve rotating device with valve stem seal includes a valve rotating device, with a cylinder head rest and a spring rest intended to bear against a valve spring during operation. The valve rotating device is designed to rotate the spring rest relative to the cylinder head rest during operation. A valve stem seal is attached to the cylinder head rest of the valve rotating device. The valve stem seal being designed to bear against a valve stem and to seal same during rotational and axial movements.
F01L 1/32 - Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for rotating lift valves, e.g. to diminish wear
F01L 3/08 - Valve guidesSealing of valve stem, e.g. sealing by lubricant
A method for shaping a hollow valve preform of a pull rod (20) includes a structuring bulb (22) which is inserted into the cavity (56) of a shaft portion (44) of a valve preform. The structuring bulb (22) has an outer diameter, and has an outer structuring, whereafter the hollow shaft portion (44) is shaped, wherein at least a portion of an inner diameter of the cavity (56) is reduced below an outer diameter of the structuring bulb (22). The structuring bulb (22) is then pulled out through the shaped shaft portion (44), wherein the outer structuring is at least partially pressed into the surface of the cavity (56).
A method for producing a valve body of a hollow valve includes providing a workpiece blank or semi-finished product, spin extruding the workpiece to produce a preform having a cup with a hollow shape formed by the cup wall. A hollow valve produced by this method is also provided.
The invention relates to a method for producing a valve body for a hollow valve. Said method comprises the following steps: providing a workpiece, blank or semi-finished product and a forming punch, introducing a protective layer between the workpiece and the forming punch (22) and press forming the workpiece to produce a preform. The invention also relates to a hollow valve produced by means of this method.
A method for producing a cavity valve is provided. The method includes providing a valve body which has a cavity in the interior. The valve body has a circular opening having an opening edge surface on a bottom side. A circular valve cover with a cover edge surface is provided. Inductive heating of at least one of the opening edge surface or the cover edge surface takes place and then welding the valve body to the valve cover by friction welding of the opening edge surface to the cover edge surface.
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
B23K 13/01 - Welding by high-frequency current heating by induction heating
A production method for a valve body of a hollow valve includes providing a preform with a valve head and a tubular wall which surrounds a cylindrical cavity. The tubular wall is flow formed above a flow forming mandrel which is inserted into the cavity in order to increase a length of the tubular wall. A hollow valve produced by flow forming is also disclosed.
A cover body (2) for a valve rotating device includes a ring-shaped upper part (4) and a ring-shaped lower part (6). The upper part (4) and the lower part (6) are axially spaced apart and are adapted to accommodate an axial spring element (24) therebetween. The upper part (4) and the lower part (6) are connected to one another by at least one connecting piece arranged at the location opposite an insertion position of the axial spring element (24).
A valve rotating device (12) having such a cover body is also provided. A ring-shaped base body (22) has a plurality of pockets (16) oriented in a circumferential direction, in each of which a ball (14) and a tangential spring (32) are arranged. The pockets (16) have a variable depth in the circumferential direction such that inclined raceways (26) for the balls (14) arranged therein are formed. The tangential springs (32) push the balls (14) toward an end of the respective pocket (16). The axial spring element (24) is ring-shaped and a first end of the axial spring element (24) is supported on an ring-shaped stop surface (18) of the base body (22) and a second end of the axial spring element (24) is supported on a surface of the upper part (4) of the cover. A surface of the lower part (6) facing away from the axial spring element (24) rests against the balls (14), and wherein the halls (14) and the axial spring element (24) are arranged overlapping in the axial direction.
A method for producing a cover both (2) for a valve rotating device is also provided.
F01L 1/32 - Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for rotating lift valves, e.g. to diminish wear
F01L 1/46 - Component parts, details, or accessories, not provided for in preceding subgroups
A method for producing a magnetic core for an electromagnetic actuator of an electromagnetic valve train includes punching a core blank from a soft magnetic metal sheet and reshaping the core blank. The core blank has a base segment with an opening and a plurality of wall segments that extend outwardly from an outer edge of the base segment. The plurality of wall segments is bent in a direction substantially perpendicular to the base segment during the reshaping.
H01F 7/06 - ElectromagnetsActuators including electromagnets
H01F 7/08 - ElectromagnetsActuators including electromagnets with armatures
H01F 7/11 - ElectromagnetsActuators including electromagnets with armatures specially adapted for AC reducing or eliminating the effects of eddy currents
H01F 41/02 - Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformersApparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils or magnets
10.
Method for producing a hollow valve with an optimised interior stem geometry for internal combustion engines
A method for producing a valve body of a hollow valve with optimised interior stem geometry includes a preform with a valve plate and a tubular wall surrounding a cavity. Flow forming the tubular wall over a flow-forming mandrel, which is inserted into the cavity to enlarge a length of the tubular wall. An interior area of the tubular wall is embossed with a structure either due to the fact that the flow-forming mandrel is a structuring mandrel having a surface structure, or alternatively, because the method includes a further step of reducing an outer diameter of the tubular wall by swaging or drawing and ironing over a structuring mandrel. Furthermore, a hollow valve is produced by this method.
A method for manufacturing an internally cooled valve (2), includes providing a valve body (4) having a valve stem (6) that ends in a valve head (8). The valve body (4) has a cavity (10) that is open toward the valve head (8) and with a valve base element (12) by friction welding the valve base element (12) to the valve head (8). The valve bottom element (12) is preferably a sintered component.
F01L 3/02 - Selecting particular materials for valve members or valve seatsValve members or valve seats composed of two or more materials
F01L 3/20 - Shapes or constructions of valve members, not provided for in preceding subgroups of this group
B23K 20/12 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by frictionFriction welding
F01L 3/14 - Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
F01P 3/14 - Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves
B22F 3/22 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor for producing castings from a slip
12.
Process and device for manufacturing hollow, internally cooled valves
A matrix for shaping a valve preform has a circular through opening and a reduced conical section. The reduced conical section tapers from an outer diameter to a reduced cone inner diameter, the outer diameter being greater than or equal to the initial outer diameter of the valve preform, and the matrix inner diameter being smaller than the initial outer diameter.
A internally cooled poppet valve (2) with inertial pump (4) includes a valve body (20) having a valve head (22) and a valve stem (24). The valve body (20) has a closed cavity (26), in which a cooling fluid (28) is disposed. The inertial pump (4) is disposed in the valve body (20), which moves the cooling fluid (28) in the cavity during operation.
An internally cooled valve (2) includes a valve body having a valve head (4) and a valve stem (6). The valve body has at least one cavity (8) in which coolant (10) is situated. The coolant is a nanofluid (12) in which nanoparticles (14) are dispersed in a dispersion medium (16).
A valve rotating device has an annular main body, an annular cover body, and an annular axial spring element. The main body has multiple pockets of variable depth so that raceways are formed for balls situated therein, wherein tangential springs press the balls against ends of the pockets in the circumferential direction. The cover body is rotatable relative to the main body about an axis and is axially displaceable, and has an annular first support element, an annular second support element, and a connection, wherein the support elements are axially spaced apart from one another and the connection connects the support elements so that they are fixed relative to one another. The axial spring element at a first end rests on an annular stop surface of the main body, and at a second end rests on a surface of the first support element, wherein the axial spring element is situated between the first support element and the second support element. A surface of the second support element facing away from the axial spring element rests against the balls, and the balls and the axial spring element are arranged in an overlapping manner in the axial direction.
F01L 1/32 - Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for rotating lift valves, e.g. to diminish wear
F01L 1/46 - Component parts, details, or accessories, not provided for in preceding subgroups
F16K 29/02 - Arrangements for movement of valve members other than for opening or closing the valve, e.g. for grinding-in, for preventing sticking providing for continuous motion
F16K 29/00 - Arrangements for movement of valve members other than for opening or closing the valve, e.g. for grinding-in, for preventing sticking
16.
Valve for internal combustion engines having a coating
The present invention for coating a valve head (6) of an inlet and/or outlet valve (4) comprises a preparation of a surface, which is to be coated, of the valve (4) for a coating, and a coating of the prepared surface with a ceramic high-temperature coating (22).
B05D 3/04 - Pretreatment of surfaces to which liquids or other fluent materials are to be appliedAfter-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
C23C 28/04 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and only coatings of inorganic non-metallic material
F01L 3/14 - Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
17.
Cavity valve with optimized shaft interior geometry, and method for producing same
A hollow valve having optimized interior stem geometry, whose valve stem has surface-enlarging structuring on an inner surface is provided. Also provided is a method for manufacturing a valve body of such a hollow valve, wherein the method comprises: providing a bowl-shaped semi-finished product having an annular wall that surrounds a cavity, and having a base section, followed by lengthening the wall with an inserted, structured mandrel, and lastly, reducing an outer diameter of the annular wall without a mandrel to obtain a predetermined valve stem outer diameter of a valve to be manufactured.
Disclosed is a method for the production of a valve body of a hollow chamber valve, said method comprising: providing a bowl-shaped semi-finished product having an annular wall, which surrounds a hollow chamber, and a bottom portion, followed by a lengthening of the wall and a final reducing of an outer diameter of the annular wall in order to obtain a predetermined valve shaft outside diameter of a valve that is to be produced. Further disclosed is a hollow chamber valve produced by means of said method.
A method for manufacturing a poppet valve or mushroom valve includes providing a mixture of metal powder and a binder, filling and pressing said mixture in a mold, to obtain a green product, removing the binder from the green product, and thermally sintering the green product to a poppet valve blank, by hot isostatic pressing. A poppet valve is also provided that is manufactured with this method.
F01L 3/20 - Shapes or constructions of valve members, not provided for in preceding subgroups of this group
F16K 3/24 - Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
B22F 3/14 - Both compacting and sintering simultaneously
20.
Internally cooled poppet valve for internal combustion engine
A poppet valve (2) with a valve body (4) has a cavity (6), a coolant inlet port (8). A coolant outlet port (10). The coolant inlet port (8) and the coolant outlet port (10) are arranged on a valve stem (12) of the poppet valve (2). The cavity (6) extends into the valve stem (12) of the poppet valve (2) and into a valve head (14) of the poppet valve (2), wherein there is provided a coolant conducting element (16) within the cavity (6) and extending into the cavity (6) from the valve head (14) to the valve stem (12), where the coolant conducting element (16) in each case has a cross-section. The coolant conducting element (16) includes a pipe section (18) and a funnel section (20), and the coolant conducting element (16) extends concentrically to the poppet valve (2) in the cavity (6) of the poppet valve (2).
The invention relates to a method for producing poppet valves, the method including: cross-wedge rolling a preform (2), which has at least one disk portion (4) and a shaft portion, to produce a valve blank (10), wherein a diameter of the shaft portion (6) is reduced substantially to a shaft diameter of a shaft (16), and additionally a length of the shaft portion (6) is increased substantially to a length of the shaft (16) by means of a rolling-out process.
A method for the production for a semi-finished valve product (4), includes casting, forging, deep-drawing, pressing and/or drop-welding of one or several metal material into a semi-finished valve product (4) that corresponds to a circle segment of a valve cut open in the axial direction. A valve is produced by welding together at least two semi-finished valve products (4) into an internally cooled valve, with the weld running in the axial direction of the valve.
F01L 3/14 - Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
F01L 3/06 - Valve members or valve seats with means for guiding or deflecting the medium controlled thereby, e.g. producing a rotary motion of the drawn-in cylinder charge
F01L 3/20 - Shapes or constructions of valve members, not provided for in preceding subgroups of this group
F16K 1/32 - Lift valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces Details
F16K 49/00 - Means in or on valves for heating or cooling
23.
Valve for internal combustion engines having a guide vane for coolant
An internally cooled inlet or outlet valve for internal combustion engines, has a valve disc, a valve stem and a cavity inside the valve stem and the valve disc. A coolant is arranged in the cavity, wherein the cavity is provided with at least one guide vane for the coolant.
The method of forming hard facing on an engine valve comprising providing an engine valve, providing an austenitic iron-based alloy, the austenitic iron-based alloy including, by weight, about 0.25% to about 0.9% carbon, about 1.5% to about 3.5% boron, about 1% to about 2% silicon, at least 20% chromium, an amount of manganese effective to provide the iron-based alloy with an austenitic structure, and the balance including iron and incidental impurities, and welding the austenitic iron-based alloy to at least a portion of the engine valve.