A facility for performing setpoint adjustment-based duty cycling techniques by adjusting the setpoint of a device or component is described. The facility reduces energy consumption for a system, such as an HVAC system, or device by adjusting or modulating an associated setpoint or temperature setting. The facility modulates the setpoint between a base setpoint value and another setpoint value based on a mode of the system. When the system is in a cooling mode, the facility modulates the temperature between the base setpoint value and a higher setpoint value. When the system is in heating mode, the facility modulates the temperature between the base setpoint value and a lower setpoint value. The facility may modulate the setpoint between the two setpoint values based on an offset value or a fixed setpoint value.
Systems, methods, and apparatus are disclosed for providing instant rebates before a transaction is completed. This involves ingest of customer and rebate data from two or more utilities, where the data is parsed and normalized into a standard format across all of the utilities. The customer data is then stored in an accounts database, while the rebate data is further processed along with utility rebate rules to determine a set of rebate eligibilities for a variety of scenarios. The resulting rebate profiles can be stored in a rebates database and linked to corresponding customer account data in the accounts database. Third-party frontends can then request rebate eligibility based on a customer identifier and retail channel, and various services can work in tandem to query the rebated database and return a set of eligibilities with so little latency that the eligibility check appears instant from a customer's standpoint.
Systems and methods are disclosed for providing instant rebates before a transaction is completed. This involves ingest of customer and rebate data from two or more utilities, where the data is parsed and normalized into a standard format across all of the utilities. The customer data is then stored in an accounts database, while the rebate data is further processed along with utility rebate rules to determine a set of device and demand response rebate eligibilities for a variety of scenarios. The resulting rebate profiles can be stored in a rebates database and linked to corresponding customer account data in the accounts database. Frontends can then request rebate eligibility based on a customer identifier and retail channel, and various services can work in tandem to query the rebated database and return a set of eligibilities with so little latency that the eligibility check appears instant from a customer's standpoint.
A facility providing systems and methods for managing and optimizing thermal comfort is provided. The facility is a software algorithm that intelligently detects the thermal comfort preferences of residential smart thermostat users, where a user's “comfort preference” is defined to refer to an estimate of a measurement of the user's comfort across varying values of some set of exogenous factors, including but not limited to indoor temperature, the time of day, the day of the week, and weather conditions. This facility encompasses the use of this “comfort preference” for the creation of an optimal schedule of setpoints for a residential thermostat which is configured to optimize some objective, including potentially user comfort, energy efficiency, load shift, or cost.
A facility implementing systems and/or methods for achieving energy consumption/production and cost goals is described. The facility identifies various components of an energy system and assesses the environment in which those components operate. Based on the identified components and assessments, the facility generates a model to simulate different series/schedules of adjustments to the system and how those adjustments will effect energy consumption or production. Using the model, and based on identified patterns, preferences, and forecasted weather conditions, the facility can identify an optimal series or schedule of adjustments to achieve the user's goals and provide the schedule to the system for implementation. The model may be constructed using a time-series of energy consumption and thermostat states to estimate parameters and algorithms of the system. Using the model, the facility can simulate the behavior of the system and, by changing simulated inputs and measuring simulated output, optimize use of the system.
A facility employing systems, methods, and/or techniques for dynamically and adaptively configuring configurable energy consuming and producing devices (e.g., smart energy devices) based on user profiles and user presence information is disclosed. In some embodiments, the facility periodically detects the presence of users, and retrieves preference information for those users. For each of one or more configurable energy devices in the area, the facility generates a combined setting based on the preferences of each user present and adjusts the devices based on the combined settings. For example, if User A, User B, and User C are present in a room and User A's preferred temperature setting is 75° F., User B's preferred temperature setting is 68° F., and User C's preferred temperature setting is 70° F., the facility may generate a combined setting for a thermostat by taking the average value of the users in the room.
F24F 11/54 - Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
F24F 11/57 - Remote control using telephone networks
G05B 15/02 - Systems controlled by a computer electric
H04L 12/28 - Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
A facility providing systems and methods for managing and optimizing energy consumption and/or production is provided. The facility provides techniques for optimizing energy-consuming and energy-producing systems to meet specified demands or goals in accordance with various constraints. The facility relies on models to generate an optimization for an energy system. In order to use generic models to simulate and optimize energy consumption for an energy system, the generic models are calibrated to properly represent or approximate conditions of the energy system during the optimization period. After the appropriate models have been calibrated for a given situation using one or more modeling parameter sets, the facility can simulate inputs and responses for the corresponding system. The facility uses the generated simulations to generate a plan or control schedule to be implemented by the energy system during the optimization period.
42 - Scientific, technological and industrial services, research and design
Goods & Services
Providing online, non-downloadable software for managing, controlling, and facilitating energy storage, generation, efficiency, transport, distribution, commercialization, and consumption; Providing online, non-downloadable software for managing, controlling, and facilitating energy storage, generation, efficiency, transport, distribution, commercialization, and consumption utilizing artificial Intelligence, data science, cloud computing, and edge computing
11.
Dynamically adaptive personalized smart energy profiles
A facility employing systems, methods, and/or techniques for dynamically and adaptively configuring configurable energy consuming and producing devices (e.g., smart energy devices) based on user profiles and user presence information is disclosed. In some embodiments, the facility periodically detects the presence of users, and retrieves preference information for those users. For each of one or more configurable energy devices in the area, the facility generates a combined setting based on the preferences of each user present and adjusts the devices based on the combined settings. For example, if User A, User B, and User C are present in a room and User A's preferred temperature setting is 75° F., User B's preferred temperature setting is 68° F., and User C's preferred temperature setting is 70° F., the facility may generate a combined setting for a thermostat by taking the average value of the users in the room.
G05B 15/02 - Systems controlled by a computer electric
H04L 12/28 - Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
F24F 11/54 - Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
F24F 11/57 - Remote control using telephone networks
12.
Optimization of energy use through model-based simulations
A facility implementing systems and/or methods for achieving energy consumption/production and cost goals is described. The facility identifies various components of an energy system and assesses the environment in which those components operate. Based on the identified components and assessments, the facility generates a model to simulate different series/schedules of adjustments to the system and how those adjustments will effect energy consumption or production. Using the model, and based on identified patterns, preferences, and forecasted weather conditions, the facility can identify an optimal series or schedule of adjustments to achieve the user's goals and provide the schedule to the system for implementation. The model may be constructed using a time-series of energy consumption and thermostat states to estimate parameters and algorithms of the system. Using the model, the facility can simulate the behavior of the system and, by changing simulated inputs and measuring simulated output, optimize use of the system.
A facility providing systems and methods for managing and optimizing thermal comfort is provided. The facility is a software algorithm that intelligently detects the thermal comfort preferences of residential smart thermostat users, where a user's “comfort preference” is defined to refer to an estimate of a measurement of the user's comfort across varying values of some set of exogenous factors, including but not limited to indoor temperature, the time of day, the day of the week, and weather conditions. This facility encompasses the use of this “comfort preference” for the creation of an optimal schedule of setpoints for a residential thermostat which is configured to optimize some objective, including potentially user comfort, energy efficiency, load shift, or cost.
42 - Scientific, technological and industrial services, research and design
Goods & Services
Application service provider (ASP), namely, providing and
hosting applications and software for use in energy
consumption tracking, monitoring, controlling and
management; application service provider (ASP) featuring
software for use in energy efficiency, home energy
management and control, and energy use analysis; hosting a
website featuring on-line non-downloadable software that
enables users to monitor, manage and control energy
consumption, analyze energy efficiency, and interact with
other users; software as a service (SAAS) services featuring
software for use in energy efficiency, home energy
management and control, and energy use analysis; application
service provider (ASP) featuring application programming
interface (API) software for integrating energy and home
energy control applications and energy service providers
with consumers.
A facility for performing setpoint adjustment-based duty cycling techniques by adjusting the setpoint of a device or component is described. The facility reduces energy consumption for a system, such as an HVAC system, or device by adjusting or modulating an associated setpoint or temperature setting. The facility modulates the setpoint between a base setpoint value and another setpoint value based on a mode of the system. When the system is in a cooling mode, the facility modulates the temperature between the base setpoint value and a higher setpoint value. When the system is in heating mode, the facility modulates the temperature between the base setpoint value and a lower setpoint value. The facility may modulate the setpoint between the two setpoint values based on an offset value or a fixed setpoint value.
42 - Scientific, technological and industrial services, research and design
Goods & Services
(1) Application service provider (ASP), namely, providing and hosting applications and software for use in energy consumption tracking, monitoring, controlling and management; application service provider (ASP) featuring software for use in energy efficiency, home energy management and control, and energy use analysis; hosting a website featuring on-line non-downloadable software that enables users to monitor, manage and control energy consumption, analyze energy efficiency, and interact with other users; software as a service (SAAS) services featuring software for use in energy efficiency, home energy management and control, and energy use analysis; application service provider (ASP) featuring application programming interface (API) software for integrating energy and home energy control applications and energy service providers with consumers.
Systems, methods, and apparatus are disclosed for providing instant rebates before a transaction is completed. This involves ingest of customer and rebate data from two or more utilities, where the data is parsed and normalized into a standard format across all of the utilities. The customer data is then stored in an accounts database, while the rebate data is further processed along with utility rebate rules to determine a set of rebate eligibilities for a variety of scenarios. The resulting rebate profiles can be stored in a rebates database and linked to corresponding customer account data in the accounts database. Third-party frontends can then request rebate eligibility based on a customer identifier and retail channel, and various services can work in tandem to query the rebated database and return a set of eligibilities with so little latency that the eligibility check appears instant from a customer's standpoint.
A facility providing systems and methods for managing and optimizing energy consumption and/or production is provided. The facility provides techniques for optimizing energy-consuming and energy-producing systems to meet specified demands or goals in accordance with various constraints. The facility relies on models to generate an optimization for an energy system. In order to use generic models to simulate and optimize energy consumption for an energy system, the generic models are calibrated to properly represent or approximate conditions of the energy system during the optimization period. After the appropriate models have been calibrated for a given situation using one or more modeling parameter sets, the facility can simulate inputs and responses for the corresponding system. The facility uses the generated simulations to generate a plan or control schedule to be implemented by the energy system during the optimization period.
H02J 3/00 - Circuit arrangements for ac mains or ac distribution networks
G05B 15/02 - Systems controlled by a computer electric
G06Q 10/04 - Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
42 - Scientific, technological and industrial services, research and design
Goods & Services
Application service provider (ASP), namely, providing and hosting applications and software for use in energy consumption tracking, monitoring, controlling and management; Application service provider (ASP) featuring software for use in energy efficiency, home energy management and control, and energy use analysis; Providing a website featuring on-line non-downloadable software that enables users to monitor, manage and control energy consumption, analyze energy efficiency, and interact with other users; Software as a service (SAAS) services featuring software for use in energy efficiency, home energy management and control, and energy use analysis; Application service provider (ASP) featuring application programming interface (API) software for integrating energy and home energy control applications and energy service providers with consumers
20.
ADAPTIVE THERMAL COMFORT LEARNING FOR OPTIMIZED HVAC CONTROL
A facility providing systems and methods for managing and optimizing thermal comfort is provided. The facility is a software algorithm that intelligently detects the thermal comfort preferences of residential smart thermostat users, where a user's "comfort preference" is defined to refer to an estimate of a measurement of the user's comfort across varying values of some set of exogenous factors, including but not limited to indoor temperature, the time of day, the day of the week, and weather conditions. This facility encompasses the use of this "comfort preference" for the creation of an optimal schedule of setpoints for a residential thermostat which is configured to optimize some objective, including potentially user comfort, energy efficiency, load shift, or cost.
A facility providing systems and methods for managing and optimizing thermal comfort is provided. The facility is a software algorithm that intelligently detects the thermal comfort preferences of residential smart thermostat users, where a user's “comfort preference” is defined to refer to an estimate of a measurement of the user's comfort across varying values of some set of exogenous factors, including but not limited to indoor temperature, the time of day, the day of the week, and weather conditions. This facility encompasses the use of this “comfort preference” for the creation of an optimal schedule of setpoints for a residential thermostat which is configured to optimize some objective, including potentially user comfort, energy efficiency, load shift, or cost.
A facility employing systems, methods, and/or techniques for dynamically and adaptively configuring configurable energy consuming and producing devices (e.g., smart energy devices) based on user profiles and user presence information is disclosed. In some embodiments, the facility periodically detects the presence of users, and retrieves preference information for those users. For each of one or more configurable energy devices in the area, the facility generates a combined setting based on the preferences of each user present and adjusts the devices based on the combined settings. For example, if User A, User B, and User C are present in a room and User A's preferred temperature setting is 75° F., User B's preferred temperature setting is 68° F., and User C's preferred temperature setting is 70° F., the facility may generate a combined setting for a thermostat by taking the average value of the users in the room.
G05B 15/02 - Systems controlled by a computer electric
H04L 12/28 - Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
F24F 11/54 - Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
F24F 11/57 - Remote control using telephone networks
23.
Methods and apparatus for achieving energy consumption goals through model-based simulations
A facility implementing systems and/or methods for achieving energy consumption/production and cost goals is described. The facility identifies various components of an energy system and assesses the environment in which those components operate. Based on the identified components and assessments, the facility generates a model to simulate different series/schedules of adjustments to the system and how those adjustments will effect energy consumption or production. Using the model, and based on identified patterns, preferences, and forecasted weather conditions, the facility can identify an optimal series or schedule of adjustments to achieve the user's goals and provide the schedule to the system for implementation. The model may be constructed using a time-series of energy consumption and thermostat states to estimate parameters and algorithms of the system. Using the model, the facility can simulate the behavior of the system and, by changing simulated inputs and measuring simulated output, optimize use of the system.
Systems, methods, and apparatus are disclosed for providing instant rebates before a transaction is completed. This involves ingest of customer and rebate data from two or more utilities, where the data is parsed and normalized into a standard format across all of the utilities. The customer data is then stored in an accounts database, while the rebate data is further processed along with utility rebate rules to determine a set of rebate eligibilities for a variety of scenarios. The resulting rebate profiles can be stored in a rebates database and linked to corresponding customer account data in the accounts database. Third-party frontends can then request rebate eligibility based on a customer identifier and retail channel, and various services can work in tandem to query the rebated database and return a set of eligibilities with so little latency that the eligibility check appears instant from a customer's standpoint.
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Electrical equipment, namely, computer network enabled
monitors used to track energy consumption; recorded computer
software in the field of energy consumption for use in
tracking, monitoring, controlling and managing energy
consumption. Application service provider (ASP), namely, providing and
hosting applications and software for use in energy
consumption tracking, monitoring, controlling and
management; application service provider (ASP) featuring
software for use in energy efficiency, home energy
management and control, and energy use analysis; hosting a
website featuring on-line non-downloadable software that
enables users to monitor, manage and control energy
consumption, analyze energy efficiency, and interact with
other users; software as a service (SAAS) services featuring
software for use in energy efficiency, home energy
management and control, and energy use analysis; application
service provider (ASP) featuring application programming
interface (API) software for integrating energy and home
energy control applications and energy service providers
with consumers.
42 - Scientific, technological and industrial services, research and design
Goods & Services
(1) Application service provider (ASP), namely, providing and hosting applications and software for use in energy consumption tracking, monitoring, controlling and management; application service provider (ASP) featuring software for use in energy efficiency, home energy management and control, and energy use analysis; hosting a website featuring on-line non-downloadable software that enables users to monitor, manage and control energy consumption, analyze energy efficiency, and interact with other users; software as a service (SAAS) services featuring software for use in energy efficiency, home energy management and control, and energy use analysis; application service provider (ASP) featuring application programming interface (API) software for integrating energy and home energy control applications and energy service providers with consumers.
A facility for performing setpoint adjustment-based duty cycling techniques by adjusting the setpoint of a device or component is described. The facility reduces energy consumption for a system, such as an HVAC system, or device by adjusting or modulating an associated setpoint or temperature setting. The facility modulates the setpoint between a base setpoint value and another setpoint value based on a mode of the system. When the system is in a cooling mode, the facility modulates the temperature between the base setpoint value and a higher setpoint value. When the system is in heating mode, the facility modulates the temperature between the base setpoint value and a lower setpoint value. The facility may modulate the setpoint between the two setpoint values based on an offset value or a fixed setpoint value.
A facility employing systems, methods, and/or techniques for dynamically and adaptively configuring configurable energy consuming and producing devices (e.g., smart energy devices) based on user profiles and user presence information is disclosed. In some embodiments, the facility periodically detects the presence of users, and retrieves preference information for those users. For each of one or more configurable energy devices in the area, the facility generates a combined setting based on the preferences of each user present and adjusts the devices based on the combined settings. For example, if User A, User B, and User C are present in a room and User A's preferred temperature setting is 75° F., User B's preferred temperature setting is 68° F., and User C's preferred temperature setting is 70° F., the facility may generate a combined setting for a thermostat by taking the average value of the users in the room.
G05B 15/02 - Systems controlled by a computer electric
H04L 12/28 - Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
F24F 11/54 - Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
F24F 11/57 - Remote control using telephone networks
42 - Scientific, technological and industrial services, research and design
Goods & Services
Application service provider (ASP), namely, providing and hosting applications and software for use in energy consumption tracking, monitoring, controlling and management; Application service provider (ASP) featuring software for use in energy efficiency, home energy management and control, and energy use analysis; Providing a website featuring on-line non-downloadable software that enables users to monitor, manage and control energy consumption, analyze energy efficiency, and interact with other users; Software as a service (SAAS) services featuring software for use in energy efficiency, home energy management and control, and energy use analysis; Application service provider (ASP) featuring application programming interface (API) software for integrating energy and home energy control applications and energy service providers with consumers
Systems, methods, and apparatus are disclosed for providing instant rebates before a transaction is completed. This involves ingest of customer and rebate data from two or more utilities, where the data is parsed and normalized into a standard format across all of the utilities. The customer data is then stored in an accounts database, while the rebate data is further processed along with utility rebate rules to determine a set of rebate eligibilities for a variety of scenarios. The resulting rebate profiles can be stored in a rebates database and linked to corresponding customer account data in the accounts database. Third-party frontends can then request rebate eligibility based on a customer identifier and retail channel, and various services can work in tandem to query the rebated database and return a set of eligibilities with so little latency that the eligibility check appears instant from a customer's standpoint.
Methods and systems for providing consumer directed energy management are described. Consumer defined triggers provide consumers and utilities with the ability to control residential energy usage, by managing manage multiple residential load control elements. A user interface is provided separately from the load control elements to allow the consumer to define his or her schedule and preferences for the purposes of controlling the multiple load control elements. In addition, settings on load control elements can be automatically adjusted based on information about consumer schedules and preferences obtained from other sources. In some embodiments, a utility interface allows utilities to implement improved energy load control. When a utility expects to implement a load control event, the utility can monitor consumer schedules and/or preferences, in order to achieve the desired energy reduction while reducing the impact on participating consumers' comfort.
Systems, methods, and apparatus are disclosed for providing instant rebates before a transaction is completed. This involves ingest of customer and rebate data from two or more utilities, where the data is parsed and normalized into a standard format across all of the utilities. The customer data is then stored in an accounts database, while the rebate data is further processed along with utility rebate rules to determine a set of rebate eligibilities for a variety of scenarios. The resulting rebate profiles can be stored in a rebates database and linked to corresponding customer account data in the accounts database. Third-party frontends can then request rebate eligibility based on a customer identifier and retail channel, and various services can work in tandem to query the rebated database and return a set of eligibilities with so little latency that the eligibility check appears instant from a customer's standpoint.
A facility providing systems and methods for managing and optimizing energy consumption and/or production is provided. The facility provides techniques for optimizing energy-consuming and energy-producing systems to meet specified demands or goals in accordance with various constraints. The facility relies on models to generate an optimization for an energy system. In order to use generic models to simulate and optimize energy consumption for an energy system, the generic models are calibrated to properly represent or approximate conditions of the energy system during the optimization period. After the appropriate models have been calibrated for a given situation using one or more modeling parameter sets, the facility can simulate inputs and responses for the corresponding system. The facility uses the generated simulations to generate a plan or control schedule to be implemented by the energy system during the optimization period.
H02J 3/00 - Circuit arrangements for ac mains or ac distribution networks
G05B 15/02 - Systems controlled by a computer electric
G06Q 10/04 - Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
34.
Dynamically adaptive personalized smart energy profiles
A facility employing systems, methods, and/or techniques for dynamically and adaptively configuring configurable energy consuming and producing devices (e.g., smart energy devices) based on user profiles and user presence information is disclosed. In some embodiments, the facility periodically detects the presence of users, and retrieves preference information for those users. For each of one or more configurable energy devices in the area, the facility generates a combined setting based on the preferences of each user present and adjusts the devices based on the combined settings. For example, if User A, User B, and User C are present in a room and User A's preferred temperature setting is 75° F., User B's preferred temperature setting is 68° F., and User C's preferred temperature setting is 70° F., the facility may generate a combined setting for a thermostat by taking the average value of the users in the room.
A facility for performing setpoint adjustment-based duty cycling techniques by adjusting the setpoint of a device or component is described. The facility reduces energy consumption for a system, such as an HVAC system, or device by adjusting or modulating an associated setpoint or temperature setting. The facility modulates the setpoint between a base setpoint value and another setpoint value based on a mode of the system. When the system is in a cooling mode, the facility modulates the temperature between the base setpoint value and a higher setpoint value. When the system is in heating mode, the facility modulates the temperature between the base setpoint value and a lower setpoint value. The facility may modulate the setpoint between the two setpoint values based on an offset value or a fixed setpoint value.
Systems and methods for providing collaborative energy benchmarking are described. Information including background data, energy consumption data, temporal data, and/or other information is gathered from multiple sources and stored in a central database. Based on the stored information, energy benchmarks are created for measuring residential energy usage. Energy usage data is displayed to consumers in multiple formats, and permits consumers to directly compare their energy usage data to other consumers or groups of consumers, in addition to their own energy usage. In some embodiments, energy challenge programs encourage reduction of energy usage. Through such programs, consumers create and present challenges for themselves and/or other consumers, such as to reduce energy usage during a given timeframe. The progress of the group and individual consumers is displayed during the course of a challenge.
The technology disclosed herein provides accurate, targeted, building improvement content in a way that resonates with the user by considering the user's whole ecosystem. The technology uses details of the user's home, neighborhood, family, environmental and historical factors, goals, economic situation, and motivations and preferences to tailor content to a user's personal situation. A server or other computing device may accomplish this by receiving data from the client, a third party, or data local to the server; building modeling constructs based on these data sets such as a physics-based model of the building and a behavioral model of the user; operating these models relative to possible discrete building improvement content units; and using the results to determine personalized building improvement content for the user such as, for example, a webpage.
A facility for performing setpoint adjustment-based duty cycling techniques by adjusting the setpoint of a device or component is described. The facility reduces energy consumption for a system, such as an HVAC system, or device by adjusting or modulating an associated setpoint or temperature setting. The facility modulates the setpoint between a base setpoint value and another setpoint value based on a mode of the system. When the system is in a cooling mode, the facility modulates the temperature between the base setpoint value and a higher setpoint value. When the system is in heating mode, the facility modulates the temperature between the base setpoint value and a lower setpoint value. The facility may modulate the setpoint between the two setpoint values based on an offset value or a fixed setpoint value.
A facility employing systems, methods, and/or techniques for dynamically and adaptively configuring configurable energy consuming and producing devices (e.g., smart energy devices) based on user profiles and user presence information is disclosed. In some embodiments, the facility periodically detects the presence of users, and retrieves preference information for those users. For each of one or more configurable energy devices in the area, the facility generates a combined setting based on the preferences of each user present and adjusts the devices based on the combined settings. For example, if User A, User B, and User C are present in a room and User A's preferred temperature setting is 75° F., User B's preferred temperature setting is 68° F., and User C's preferred temperature setting is 70° F., the facility may generate a combined setting for a thermostat by taking the average value of the users in the room.
G01M 1/38 - Combined machines or devices for both determining and correcting imbalance
G05B 13/00 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
A facility comprising systems, methods, and techniques for collecting data indicative of energy consumption and/or energy production by energy systems and devices and providing the data to interested users and devices in real-time is described. The facility may comprise an energy gateway device coupled to one or more monitored devices, one or more energy data extraction servers, and one or more client computers. The energy gateway devices and energy data extraction servers are coupled to a network and are configured to collect energy consumption and/or energy production data from one or more devices and provide an indication of the collected data in real-time or near real-time. The facility may collect current energy consumption or production rates, predicted energy consumption or production levels over a future period of time, and/or amounts of energy that has been consumed or produced by the device over a previous period of time.
A facility implementing systems and/or methods for achieving energy consumption/production and cost goals is described. The facility identifies various components of an energy system and assesses the environment in which those components operate. Based on the identified components and assessments, the facility generates a model to simulate different series/schedules of adjustments to the system and how those adjustments will effect energy consumption or production. Using the model, and based on identified patterns, preferences, and forecasted weather conditions, the facility can identify an optimal series or schedule of adjustments to achieve the user's goals and provide the schedule to the system for implementation. The model may be constructed using a time-series of energy consumption and thermostat states to estimate parameters and algorithms of the system. Using the model, the facility can simulate the behavior of the system and, by changing simulated inputs and measuring simulated output, optimize use of the system.
A communications bridge facilitates communication between an automatic meter reading (AMR) meter and a home area network (HAN) that uses the ZigBee smart energy (SE) protocol. The communications bridge includes a variety of components, including an AMR receiver, a microcontroller, and a ZigBee radio. The AMR receiver reads AMR data, which is not compatible with the ZigBee SE protocol, from the AMR meter. The microcontroller parses the received AMR data and translates it into corresponding ZigBee data. This ZigBee data is transmitted to other devices on the HAN via the ZigBee radio. The translated AMR meter data can then be presented to a consumer in real-time, enabling the consumer to better understand and manage his or her energy usage.
G08B 23/00 - Alarms responsive to unspecified undesired or abnormal conditions
G08C 15/06 - Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path successively, i.e. using time division
43.
Methods and systems for managing energy usage in buildings
A method and system for managing energy usage in a building is provided. The method includes collecting data on energy consumption in the building on a generally continuous basis for at least a given time period. Information relating to the energy consumption is displayed to a user on one or more devices. The information includes (a) the data collected on energy consumption to be displayed in real-time on the one or more devices, (b) a comparison of the data collected on energy consumption in the building to energy consumption data of a cohort or group of cohorts, (c) recommendations for reducing energy consumption in the building based on the data collected on energy consumption, and (d) progress report data comparing the data collected on energy consumption to a desired consumption level.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
H02J 3/14 - Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
G06Q 10/06 - Resources, workflows, human or project managementEnterprise or organisation planningEnterprise or organisation modelling
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
44.
Consumer directed energy management systems and methods
Methods and systems for providing consumer directed energy management are described. Consumer defined triggers provide consumers and utilities with the ability to control residential energy usage, by managing manage multiple residential load control elements. A user interface is provided separately from the load control elements to allow the consumer to define his or her schedule and preferences for the purposes of controlling the multiple load control elements. In addition, settings on load control elements can be automatically adjusted based on information about consumer schedules and preferences obtained from other sources. In some embodiments, a utility interface allows utilities to implement improved energy load control. When a utility expects to implement a load control event, the utility can monitor consumer schedules and/or preferences, in order to achieve the desired energy reduction while reducing the impact on participating consumers' comfort.
Systems and methods for providing collaborative energy benchmarking are described. Information including background data, energy consumption data, temporal data, and/or other information is gathered from multiple sources and stored in a central database. Based on the stored information, energy benchmarks are created for measuring residential energy usage. Energy usage data is displayed to consumers in multiple formats, and permits consumers to directly compare their energy usage data to other consumers or groups of consumers, in addition to their own energy usage. In some embodiments, energy challenge programs encourage reduction of energy usage. Through such programs, consumers create and present challenges for themselves and/or other consumers, such as to reduce energy usage during a given timeframe. The progress of the group and individual consumers is displayed during the course of a challenge.