The invention relates to a method in which a medium viscous to high viscous fluid and/or a medium viscous to high viscous suspension is mixed by means of a stirring element device (10), which is driven via a driveshaft (12). According to the invention, the fluid and/or the suspension is displaced into a multidimensional flow by means of a stirring element device (10) stirring blade (14) which is close to the wall, and a flow resistance along a shaft direction (16) in a region (18) near the shaft is minimized.
The invention is based on a stirrer apparatus (10a-c), in particular for use in crystallization systems, having a stirring shaft (14a-c), having at least one first blade element (16a-c), which is retained on the stirring shaft (14a-c) and is intended for mixing at least one mixing material, and having at least one second blade element (18a-c), which is retained on the stirring shaft (14a-c) and is intended for keeping at least one area (20a-c) in the vicinity around the stirring shaft (14a-c) free of material deposits and/or encrustations. In order to achieve improvement in design, it is proposed that the stirrer apparatus should have at least one stirring blade (22a-c) with a front side (24a-c) and a rear side (26a-c), said stirring blade comprising the first blade element (16a-c) and the second blade element (18a-c).
B01F 27/091 - Stirrers characterised by the mounting of the stirrers with respect to the receptacle with elements co-operating with receptacle wall or bottom, e.g. for scraping the receptacle wall
B01F 27/1123 - Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades sickle-shaped, i.e. curved in at least one direction
C30B 35/00 - Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
Disclosed is an agitator device, in particular a draft tube agitator device, comprising at least one agitator unit (12a; 12b) that can rotate about a rotational axis (10a) and that is provided for the delivery of a fluid in an axial delivery direction (16a; 16b). The agitator unit has at least one rotor blade element (18a), a section of which that projects on a plane perpendicular to the rotational axis (10a) having an at least substantially arced outer contour (20a), and the rotor blade element (18a) has at least one first substantially planar region (24a) lying on a blade plane (22a) and a second region (26a) curving away from the blade plane (22a).
The invention is based on a stirring device with at least one at least substantially metallic stirring blade carrier (12a; 12b; 12c) and with a plurality of stirring blades (14a; 14b; 14c), which are connected to the stirring blade carrier (12a; 12b; 12c), wherein the stirring blades (14a; 14b; 14c) are at least substantially made of a non-metallic material.It is proposed that the non-metallic material is a ceramic material.
The invention relates to a stirring device, in particular an axially conveying stirring device, for stirring, mixing, homogenising, dispersing and/or suspending, in particular abrasive media, comprising at least one mixing blade (10) which is provided in order to rotate about a rotational axis (12), and a contour unit (14) which is provided to reduce the wear and tear of at least one mixing blade (10).
The invention relates to a stirring arrangement having a rotating stirring body (2) for stirring fluids. The stirring body (2) has stirring blades (4) attached on a stirring body hub (3). The stirring body further includes a gas supply device (5) supplying a gas, such as air, for dispersing with the stirring body (2). The gas supply device (5) includes a distribution bushing (6) which rotates with the hub (3) of the stirring body (2) and has an interior for receiving the gas. The distribution bushing (6) and the interior thereof are in fluid communication with co-rotating outlet lines (7). Outlet openings of the outlet lines (7) are disposed in the immediate vicinity of the stirring blades (4) and within the volume swept by the stirring body (2) or in the immediate outflow zones, and discharge the gas at respective desired locations in the corresponding desired flow direction.