Molten oxide electrolysis may be used for extracting one or more metals from a mixture of metal oxides. The mixture of metal oxides may be complex and include at least three metal oxides, each present at 0.5 wt % or greater based on a total weight of the metal oxide electrolyte precursor, to produce a metal oxide electrolyte. In some instances, two or more metals may be extracted in a series of molten oxide electrolysis process where metal oxides having higher Gibbs free energy of formation at 1500° C. are preferentially reduced in each respective molten oxide electrolysis unit before metal oxides having lower Gibbs free energy of formation at 1500° C.
Molten oxide electrolysis may be used for extracting one or more metals from a mixture of metal oxides. The mixture of metal oxides may be complex and include at least three metal oxides, each present at 0.5 wt % or greater based on a total weight of the metal oxide electrolyte precursor, to produce a metal oxide electrolyte. In some instances, two or more metals may be extracted in a series of molten oxide electrolysis process where metal oxides having higher Gibbs free energy of formation at 1500° C. are preferentially reduced in each respective molten oxide electrolysis unit before metal oxides having lower Gibbs free energy of formation at 1500° C.
Molten oxide electrolysis may be used for extracting one or more metals from a mixture of metal oxides. The mixture of metal oxides may be complex and include at least three metal oxides, each present at 0.5 wt% or greater based on a total weight of the metal oxide electrolyte precursor, to produce a metal oxide electrolyte. In some instances, two or more metals may be extracted in a series of molten oxide electrolysis process where metal oxides having higher Gibbs free energy of formation at 1500°C are preferentially reduced in each respective molten oxide electrolysis unit before metal oxides having lower Gibbs free energy of formation at 1500°C.
Metallurgical assemblies and systems according to the present technology may include a refractory vessel including sides and a base. The base may define a plurality of apertures centrally located within the base. The sides and the base may at least partially define an interior volume of the refractory vessel. The assemblies may include a lid removably coupled with the refractory vessel and configured to form a seal with the refractory vessel. The lid may define a plurality of apertures through the lid. The assemblies may also include a current collector proximate the base of the refractory vessel. The current collector may include conductive extensions positioned within the plurality of apertures centrally located within the base.
C25B 9/00 - Cells or assemblies of cellsConstructional parts of cellsAssemblies of constructional parts, e.g. electrode-diaphragm assembliesProcess-related cell features
C25B 11/00 - ElectrodesManufacture thereof not otherwise provided for
C25C 3/08 - Cell construction, e.g. bottoms, walls, cathodes
C25C 3/16 - Electric current supply devices, e.g. bus bars
C25C 7/00 - Constructional parts, or assemblies thereof, of cellsServicing or operating of cells
A method of and system for electrolytic production of reactive metals is presented. The method includes providing a molten oxide electrolytic cell including a container, an anode, and a current collector and disposing a molten oxide electrolyte within the container and in ion conducting contact with the anode and the current collector. The electrolyte includes a mixture of at least one alkaline earth oxide and at least one rare earth oxide. The method also includes providing a metal oxide feedstock including at least one target metal species into the molten oxide electrolyte and applying a current between the anode and the current collector, thereby reducing the target metal species to form at least one molten target metal in the container.
Methods of manufacturing a current collector assembly may include iteratively solving a model on a computer. The model may utilize received inputs including a variable number and arrangement of conductive elements to determine as an output a heat distribution within a hypothetical current collector assembly. The methods may also include identifying as a solution to the model a number and arrangement of conductive elements coupled with a current collector that produces a contained heat distribution within the hypothetical current collector assembly. The methods may also include manufacturing the current collector assembly, and the current collector assembly may include a defined plurality of apertures within a refractory base of the current collector assembly in a pattern configured to receive the number and arrangement of conductive elements identified as the solution to the model.
F27B 3/08 - Hearth-type furnaces, e.g. of reverberatory typeElectric arc furnaces heated electrically, e.g. electric arc furnaces, with or without any other source of heat
Metallurgical assemblies and systems according to the present technology may include a refractory vessel including sides and a base. The base may define a plurality of apertures centrally located within the base. The sides and the base may at least partially define an interior volume of the refractory vessel. The assemblies may include a lid removably coupled with the refractory vessel and configured to form a seal with the refractory vessel. The lid may define a plurality of apertures through the lid. The assemblies may also include a current collector proximate the base of the refractory vessel. The current collector may include conductive extensions positioned within the plurality of apertures centrally located within the base.
A method of and system for electrolytic production of reactive metals is presented. The method includes providing a molten oxide electrolytic cell including a container, an anode, and a current collector and disposing a molten oxide electrolyte within the container and in ion conducting contact with the anode and the current collector. The electrolyte includes a mixture of at least one alkaline earth oxide and at least one rare earth oxide. The method also includes providing a metal oxide feedstock including at least one target metal species into the molten oxide electrolyte and applying a current between the anode and the current collector, thereby reducing the target metal species to form at least one molten target metal in the container.
Methods of manufacturing a current collector assembly may include iteratively solving a model on a computer. The model may utilize received inputs including a variable number and arrangement of conductive elements to determine as an output a heat distribution within a hypothetical current collector assembly. The methods may also include identifying as a solution to the model a number and arrangement of conductive elements coupled with a current collector that produces a contained heat distribution within the hypothetical current collector assembly. The methods may also include manufacturing the current collector assembly, and the current collector assembly may include a defined plurality of apertures within a refractory base of the current collector assembly in a pattern configured to receive the number and arrangement of conductive elements identified as the solution to the model.