Methods and apparatus for implementing signaling in access point devices is described. An access point device may include a network interface configured to be coupled to a wired network, a radio configured to emit radio waves that enable a plurality of wireless devices in an environment of the access point device to wirelessly access the wired network, and at least one signaling component, wherein the at least one signaling component is configured to transmit and/or receive signals, wherein the signals are different from the radio waves emitted from the radio.
G05D 1/69 - Coordinated control of the position or course of two or more vehicles
G05D 105/28 - Specific applications of the controlled vehicles for transportation of freight
G05D 107/70 - Industrial sites, e.g. warehouses or factories
H04L 67/12 - Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
H04W 4/33 - Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
H04W 76/15 - Setup of multiple wireless link connections
A computer-implemented method executed by data processing hardware of a robot causes the data processing hardware to perform operations. The robot includes an articulated arm having an end effector configured to engage with an object. The operations include receiving a measured task parameter set for the end effector. The measured task parameter set representing positions of the end effector while manipulating the object. The operations also include generating a task space model for the object based on the measured task parameter set. The task space model modelling the at least one constrained axis of the object. The operations further include limiting movement of the end effector along the at least one constrained axis of the object based on the task space model.
B25J 13/08 - Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
B62D 57/02 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
G05B 19/4155 - Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
3.
DIRECTED EXPLORATION FOR NAVIGATION IN DYNAMIC ENVIRONMENTS
A computer-implemented method when executed by data processing hardware causes the data processing hardware to perform operations. The operations include receiving a navigation route for a mobile robot. The navigation route includes a sequence of waypoints connected by edges. Each edge corresponds to movement instructions that navigate the mobile robot between waypoints of the sequence of waypoints. While the mobile robot is traveling along the navigation route, the operations include determining that the mobile robot is unable to execute a respective movement instruction for a respective edge of the navigation route due to an obstacle obstructing the respective edge, generating an alternative path to navigate the mobile robot to an untraveled waypoint in the sequence of waypoints, and resuming travel by the mobile robot along the navigation route. The alternative path avoids the obstacle.
A method of footstep contact detection includes receiving joint dynamics data for a swing phase of a swing leg of the robot, receiving odometry data indicative of a pose of the robot, determining whether an impact on the swing leg is indicative of a touchdown of the swing leg based on the joint dynamics data and an amount of completion of the swing phase, and determining when the impact on the swing leg is not indicative of the touchdown of the swing leg, a cause of the impact based on the joint dynamics data and the odometry data.
B25J 13/08 - Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
B62D 57/02 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
B62D 57/024 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
B62D 57/028 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
6.
ROBOT LOCALIZATION USING DATA WITH VARIABLE DATA TYPES
Systems and methods are described for instructing performance of a localization and an action by a mobile robot based on composite data. A system may obtain satellite-based position data and one or more of odometry data or point cloud data. The system may generate composite data by merging the satellite-based position data and the one or more of the odometry data or the point cloud data. The system may instruct performance of a localization by the mobile robot based on the composite data. Based on the localization by the mobile robot, the system may identify an action and instruct performance of the action by a mobile robot.
G05D 1/246 - Arrangements for determining position or orientation using environment maps, e.g. simultaneous localisation and mapping [SLAM]
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
G01S 19/45 - Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
G05D 1/222 - Remote-control arrangements operated by humans
G05D 1/648 - Performing a task within a working area or space, e.g. cleaning
G05D 111/50 - Internal signals, i.e. from sensors located in the vehicle, e.g. from compasses or angular sensors
A computing system of a robot receives robot data reflecting at least a portion of the robot, and object data reflecting at least a portion of an object, the object data determined based on information from at least two sources. The computing system determines, based on the robot data and the object data, a set of states of the object, each state in the set of states associated with a distinct time at which the object is at least partially supported by the robot. The set of states includes at least three states associated with three distinct times. The computing system instructs the robot to perform a manipulation of the object based, at least in part, on at least one state in the set of states.
Techniques for automated constrained manipulation are provided. In one aspect, a method includes receiving a request for manipulating a target constrained object and receiving perception data from at least one sensor of a robot. The perception data indicative of the target constrained object. The method also includes receiving a semantic model of the target constrained object generated based on the perception data and determining a location for a robotic arm of the robot to interact with the target constrained object based on the semantic model and the request. The method further includes controlling the robotic arm to manipulate the target constrained object based on the location for the robotic arm to interact with the target constrained object.
Techniques for automated constrained manipulation are provided. In one aspect, a method includes receiving a request for manipulating a target constrained object and receiving perception data from at least one sensor of a robot. The perception data indicative of the target constrained object. The method also includes receiving a semantic model of the target constrained object generated based on the perception data and determining a location for a robotic arm of the robot to interact with the target constrained object based on the semantic model and the request. The method further includes controlling the robotic arm to manipulate the target constrained object based on the location for the robotic arm to interact with the target constrained object.
Systems and methods are described for dynamic and variable definition of robot missions and performance of the robot missions. A system can obtain first robot mission data associated with a first robot mission and second robot mission data. The second robot mission data may be associated with a second robot mission or a user-defined route edge. The system can generate composite mission data based on the first robot mission data and the second robot mission data. The system can instruct navigation of a robot through an environment according to the composite mission data.
Methods and apparatus for determining a control strategy for controlling a robot based on power limits of the robot are provided. The method includes determining, by a computing device, motor control information for a plurality of motors associated with a plurality of joints of the robot, the motor control information being determined based, at least in part, on a robot trajectory to achieve a desired behavior and power limit information associated with a power system of the robot, and controlling the plurality of motors associated with the plurality of joints of the robot based, at least in part, on the motor control information.
G05D 1/646 - Following a predefined trajectory, e.g. a line marked on the floor or a flight path
B60L 15/20 - Methods, circuits or devices for controlling the propulsion of electrically-propelled vehicles, e.g. their traction-motor speed, to achieve a desired performanceAdaptation of control equipment on electrically-propelled vehicles for remote actuation from a stationary place, from alternative parts of the vehicle or from alternative vehicles of the same vehicle train for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
The invention includes systems and methods for relating to improved body structures for robots. A robot assembly includes a base member (e.g., a pelvis base). The robot assembly includes a first hip member rotatably connected to the pelvis base. The first hip member is connected to a first electric actuator configured to rotate the first hip member about a first hip axis relative to the pelvis base. A first intermediate member is rotatably connected to the first hip member. The first intermediate member is connected to a second electric actuator configured to rotate the first intermediate member about a second hip axis relative to the first hip member. A first leg member is rotatably connected to the first intermediate member. The first leg member is connected to a third electric actuator configured to rotate the first leg member about a third hip axis relative to the first intermediate member.
Computer-implemented methods and apparatus for manipulating an object using a robotic device are provided. The method includes associating a first grasp region of an object with an end effector of a robotic device, wherein the first grasp region includes a set of potential grasps achievable by the end effector of the robotic device. The method further includes determining, within the first grasp region, a grasp from among the set of potential grasps, wherein the grasp is determined based, at least in part, on information associated with a capability of the robotic device to perform the grasp, and instructing the robotic device to manipulate the object based on the grasp.
The invention includes a screw actuator. The screw actuator includes a screw having a screw shaft and a screw nut. The screw shaft defines a first longitudinal axis along its length. The screw nut at least partially surrounds the screw shaft. The screw actuator includes a motor having a stator and a rotor. The rotor is mechanically coupled to the screw shaft. The stator at least partially surrounds the rotor. The screw actuator includes a first rigid member having a length dimension oriented along the first longitudinal axis. The screw actuator includes a second rigid member mechanically constrained relative to the first rigid member. The second rigid member is configured to move along a direction of the first longitudinal axis.
Systems and methods are disclosed for altering operation of a machine (e.g., bringing about an emergency stop). A device comprises an emitter configured to produce a first acoustic signal having a first tone and a second tone, wherein the first tone is different from the second tone. The device also includes an activation mechanism in communication with the emitter. The activation mechanism is configured to activate the emitter.
Systems and methods are disclosed for altering operation of a machine (e.g., bringing about an emergency stop). A device comprises an emitter configured to produce a first acoustic signal having a first tone and a second tone, wherein the first tone is different from the second tone. The device also includes an activation mechanism in communication with the emitter. The activation mechanism is configured to activate the emitter.
G05B 19/406 - Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
F16P 3/14 - Safety devices acting in conjunction with the control or operation of a machineControl arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
17.
ROBOT LOCALIZATION USING DATA WITH VARIABLE DATA TYPES
Systems and methods are described for instructing performance of a localization and an action by a mobile robot based on composite data. A system may obtain satellite-based position data and one or more of odometry data or point cloud data. The system may generate composite data by merging the satellite-based position data and the one or more of the odometry data or the point cloud data. The system may instruct performance of a localization by the mobile robot based on the composite data. Based on the localization by the mobile robot, the system may identify an action and instruct performance of the action by a mobile robot.
G01C 21/00 - NavigationNavigational instruments not provided for in groups
G05D 1/245 - Arrangements for determining position or orientation using dead reckoning
G05D 1/246 - Arrangements for determining position or orientation using environment maps, e.g. simultaneous localisation and mapping [SLAM]
G05D 1/248 - Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons generated by satellites, e.g. GPS
G05D 107/17 - Spaces with priority for humans, e.g. populated areas, pedestrian ways, parks or beaches
G05D 107/60 - Open buildings, e.g. offices, hospitals, shopping areas or universities
The invention includes a screw actuator. The screw actuator includes a screw having a screw shaft and a screw nut. The screw shaft defines a first longitudinal axis along its length. The screw nut at least partially surrounds the screw shaft. The screw actuator includes a motor having a stator and a rotor. The rotor is mechanically coupled to the screw shaft. The stator at least partially surrounds the rotor. The screw actuator includes a first rigid member having a length dimension oriented along the first longitudinal axis. The screw actuator includes a second rigid member mechanically constrained relative to the first rigid member. The second rigid member is configured to move along a direction of the first longitudinal axis.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
H02K 7/06 - Means for converting reciprocating motion into rotary motion or vice versa
F16H 25/22 - Screw mechanisms with balls, rollers, or similar members between the co-operating partsElements essential to the use of such members
Systems and methods related to intelligent grippers with individual cup control are disclosed. One aspect of the disclosure provides a method of determining grip quality between a robotic gripper and an object. The method comprises applying a vacuum to two or more cup assemblies of the robotic gripper in contact with the object, moving the object with the robotic gripper after applying the vacuum to the two or more cup assemblies, and determining, using at least one pressure sensor associated with each of the two or more cup assemblies, a grip quality between the robotic gripper and the object.
A robot includes a mobile base, a turntable rotatably coupled to the mobile base, a robotic arm operatively coupled to the turntable, and at least one directional sensor. An orientation of the at least one directional sensor is independently controllable. A method of controlling a robotic arm includes controlling a state of a mobile base and controlling a state of a robotic arm coupled to the mobile base, based, at least in part, on the state of the mobile base.
Systems and methods for determining movement of a robot about an environment are provided. A computing system of the robot (i) receives information including a navigation target for the robot and a kinematic state of the robot; (ii) determines, based on the information and a trajectory target for the robot, a retargeted trajectory for the robot; (iii) determines, based on the retargeted trajectory, a centroidal trajectory for the robot and a kinematic trajectory for the robot consistent with the centroidal trajectory; and (iv) determines, based on the centroidal trajectory and the kinematic trajectory, a set of vectors having a vector for each of one or more joints of the robot.
B25J 13/08 - Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
B62D 57/02 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
G05D 1/249 - Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons from positioning sensors located off-board the vehicle, e.g. from cameras
G05D 1/646 - Following a predefined trajectory, e.g. a line marked on the floor or a flight path
22.
DYNAMIC MASS ESTIMATION METHODS FOR AN INTEGRATED MOBILE MANIPULATOR ROBOT
A method of estimating one or more mass characteristics of a payload manipulated by a robot includes moving the payload using the robot, determining one or more accelerations of the payload while the payload is in motion, sensing, using one or more sensors of the robot, a wrench applied to the payload while the payload is in motion, and estimating the one or more mass characteristics of the payload based, at least in part, on the determined accelerations and the sensed wrench.
Embodiments are provided for receiving a request to output audio at a first speaker and a second speaker of an electronic device, determining that the electronic device is oriented in a portrait orientation or a landscape orientation, identifying, based on the determined orientation, a first equalization setting for the first speaker and a second equalization setting for the second speaker, providing, for output at the first speaker, a first audio signal with the first equalization setting, and providing, for output at the second speaker, a second audio signal with the second equalization setting.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/03 - Arrangements for converting the position or the displacement of a member into a coded form
G06F 3/0346 - Pointing devices displaced or positioned by the userAccessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
An example implementation includes (i) receiving sensor data that indicates topographical features of an environment in which a robotic device is operating, (ii) processing the sensor data into a topographical map that includes a two-dimensional matrix of discrete cells, the discrete cells indicating sample heights of respective portions of the environment, (iii) determining, for a first foot of the robotic device, a first step path extending from a first lift-off location to a first touch-down location, (iv) identifying, within the topographical map, a first scan patch of cells that encompass the first step path, (v) determining a first high point among the first scan patch of cells; and (vi) during the first step, directing the robotic device to lift the first foot to a first swing height that is higher than the determined first high point.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
G05D 1/43 - Control of position or course in two dimensions
G05D 1/646 - Following a predefined trajectory, e.g. a line marked on the floor or a flight path
25.
HANDLING GAIT DISTURBANCES WITH ASYNCHRONOUS TIMING
An example method may include i) detecting a disturbance to a gait of a robot, where the gait includes a swing state and a step down state, the swing state including a target swing trajectory for a foot of the robot, and where the target swing trajectory includes a beginning and an end; and ii) based on the detected disturbance, causing the foot of the robot to enter the step down state before the foot reaches the end of the target swing trajectory.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
A method for terrain and constraint planning a step plan includes receiving, at data processing hardware of a robot, image data of an environment about the robot from at least one image sensor. The robot includes a body and legs. The method also includes generating, by the data processing hardware, a body-obstacle map, a ground height map, and a step-obstacle map based on the image data and generating, by the data processing hardware, a body path for movement of the body of the robot while maneuvering in the environment based on the body-obstacle map. The method also includes generating, by the data processing hardware, a step path for the legs of the robot while maneuvering in the environment based on the body path, the body-obstacle map, the ground height map, and the step-obstacle map.
Techniques for determining robotic step timing and sequencing using reinforcement learning are provided. In one aspect, a method includes receiving a target trajectory for a robot and receiving a state of the robot. The method further includes generating, using a neural network, a set of gait timing parameters for the robot based, at least in part, on the state of the robot and the target trajectory and controlling movement of the robot based on the set of gait timing parameters.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
G05D 101/15 - Details of software or hardware architectures used for the control of position using artificial intelligence [AI] techniques using machine learning, e.g. neural networks
Techniques for determining robotic step timing and sequencing using reinforcement learning are provided. In one aspect, a method includes receiving a target trajectory for a robot and receiving a state of the robot. The method further includes generating, using a neural network, a set of gait timing parameters for the robot based, at least in part, on the state of the robot and the target trajectory and controlling movement of the robot based on the set of gait timing parameters.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
Using the techniques discussed herein, a set of images is captured by one or more array imagers (106). Each array imager includes multiple imagers configured in various manners. Each array imager captures multiple images of substantially a same scene at substantially a same time. The images captured by each array image are encoded by multiple processors (112, 114). Each processor can encode sets of images captured by a different array imager, or each processor can encode different sets of images captured by the same array imager. The encoding of the images is performed using various image-compression techniques so that the information that results from the encoding is smaller, in terms of storage size, than the uncompressed images.
H04N 13/282 - Image signal generators for generating image signals corresponding to three or more geometrical viewpoints, e.g. multi-view systems
G06T 1/20 - Processor architecturesProcessor configuration, e.g. pipelining
H04N 13/161 - Encoding, multiplexing or demultiplexing different image signal components
H04N 19/107 - Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
H04N 19/42 - Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
H04N 19/436 - Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation using parallelised computational arrangements
H04N 19/503 - Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
H04N 19/593 - Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
H04N 19/597 - Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
H04N 19/62 - Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding by frequency transforming in three dimensions
H04N 23/45 - Cameras or camera modules comprising electronic image sensorsControl thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
H04N 23/75 - Circuitry for compensating brightness variation in the scene by influencing optical camera components
H04N 23/80 - Camera processing pipelinesComponents thereof
H04N 23/957 - Light-field or plenoptic cameras or camera modules
30.
SYSTEMS AND METHODS FOR GRASPING OBJECTS WITH UNKNOWN OR UNCERTAIN EXTENTS USING A ROBOTIC MANIPULATOR
Methods and apparatus for grasping an object by a suction-based gripper of a mobile robot are provided. The method comprises receiving, by a computing device, from a perception system of the mobile robot, perception information reflecting an object to be grasped by the suction-based gripper, determining, by the computing device, uncertainty information reflecting an unknown or uncertain extent and/or pose of the object, determining, by the computing device, a grasp strategy to grasp the object based, at least in part, on the uncertainty information, and controlling, by the computing device, the mobile robot to grasp the object using the grasp strategy.
Systems and methods for determining movement of a robot are provided. A computing system of the robot receives information including an initial state of the robot and a goal state of the robot. The computing system determines, using nonlinear optimization, a candidate trajectory for the robot to move from the initial state to the goal state. The computing system determines whether the candidate trajectory is feasible. If the candidate trajectory is feasible, the computing system provides the candidate trajectory to a motion control module of the robot. If the candidate trajectory is not feasible, the computing system determines, using nonlinear optimization, a different candidate trajectory for the robot to move from the initial state to the goal state, the nonlinear optimization using one or more changed parameters.
A method for negotiating stairs includes receiving image data about a robot maneuvering in an environment with stairs. Here, the robot includes two or more legs. Prior to the robot traversing the stairs, for each stair, the method further includes determining a corresponding step region based on the received image data. The step region identifies a safe placement area on a corresponding stair for a distal end of a corresponding swing leg of the robot. Also prior to the robot traversing the stairs, the method includes shifting a weight distribution of the robot towards a front portion of the robot. When the robot traverses the stairs, the method further includes, for each stair, moving the distal end of the corresponding swing leg of the robot to a target step location where the target step location is within the corresponding step region of the stair.
B62D 57/024 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
33.
WHOLE BODY MANIPULATION ON A LEGGED ROBOT USING DYNAMIC BALANCE
A robot system includes: an upper body section including one or more end-effectors; a lower body section including one or more legs; and an intermediate body section coupling the upper and lower body sections. An upper body control system operates at least one of the end-effectors. The intermediate body section experiences a first intermediate body linear force and/or moment based on an end-effector force acting on the at least one end-effector. A lower body control system operates the one or more legs. The one or more legs experience respective surface reaction forces. The intermediate body section experiences a second intermediate body linear force and/or moment based on the surface reaction forces. The lower body control system operates the one or more legs so that the second intermediate body linear force balances the first intermediate linear force and the second intermediate body moment balances the first intermediate body moment.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
B62D 57/02 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
B62D 57/024 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
34.
DYNAMIC PERFORMANCE OF ACTIONS BY A MOBILE ROBOT BASED ON SENSOR DATA AND A SITE MODEL
Systems and methods are described for instructing performance of an action by a mobile robot based on transformed data. A system may obtain a site model in a first data format and sensor data in a second data format. The site model and/or the sensor data may be annotated. The system may transform the site model and the sensor data to generate transformed data in a third data format. The system may provide the transformed data to a computing system. For example, the system may provide the transformed data to a machine learning model. Based on the output of the computing system, the system may identify an action and instruct performance of the action by a mobile robot.
The invention includes systems and methods for routing data packets in a robot. The method comprises routing, using a first switching device, data packets between a first host processor and a first electronic device of the robot, and routing, using the first switching device, data packets between a second host processor and a second electronic device of the robot.
Systems and methods are described for instructing performance of an action by a mobile robot based on transformed data. A system may obtain a site model in a first data format and sensor data in a second data format. The site model and/or the sensor data may be annotated. The system may transform the site model and the sensor data to generate transformed data in a third data format. The system may provide the transformed data to a computing system. For example, the system may provide the transformed data to a machine learning model. Based on the output of the computing system, the system may identify an action and instruct performance of the action by a mobile robot.
A gripper mechanism includes a pair of gripper jaws, a linear actuator, and a rocker bogey. The linear actuator drives a first gripper jaw to move relative to a second gripper jaw. Here, the linear actuator includes a screw shaft and a drive nut where the drive nut includes a protrusion having protrusion axis expending along a length of the protrusion. The protrusion axis is perpendicular to an actuation axis of the linear actuator along a length of the screw shaft. The rocker bogey is coupled to the drive nut at the protrusion to form a pivot point for the rocker bogey and to enable the rocker bogey to pivot about the protrusion axis when the linear actuator drives the first gripper jaw to move relative to the second gripper jaw.
A perception mast for mobile robot is provided. The mobile robot comprises a mobile base, a turntable operatively coupled to the mobile base, the turntable configured to rotate about a first axis, an arm operatively coupled to a first location on the turntable, and the perception mast operatively coupled to a second location on the turntable, the perception mast configured to rotate about a second axis parallel to the first axis, wherein the perception mast includes disposed thereon, a first perception module and a second perception module arranged between the first imaging module and the turntable.
A computer-implemented method when executed by data processing hardware of a legged robot causes the data processing hardware to perform operations including receiving sensor data corresponding to an area including at least a portion of a docking station. The operations include determining an estimated pose for the docking station based on an initial pose of the legged robot relative to the docking station. The operations include identifying one or more docking station features from the received sensor data. The operations include matching the one or more identified docking station features to one or more known docking station features. The operations include adjusting the estimated pose for the docking station to a corrected pose for the docking station based on an orientation of the one or more identified docking station features that match the one or more known docking station features.
B60L 53/36 - Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
B60L 53/16 - Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
B62D 57/02 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
The disclosure provides systems and methods for mitigating slip of a robot appendage. In one aspect, a method for mitigating slip of a robot appendage includes (i) receiving an input from one or more sensors, (ii) determining, based on the received input, an appendage position of the robot appendage, (iii) determining a filter position for the robot appendage, (iv) determining a distance between the appendage position and the filter position, (v) determining, based on the distance, a force to apply to the robot appendage, (vi) causing one or more actuators to apply the force to the robot appendage, (vii) determining whether the distance is greater than a threshold distance, and (viii) responsive to determining that the distance is greater than the threshold distance, the control system adjusting the filter position to a position, which is the threshold distance from the appendage position, for use in a next iteration.
B25J 13/08 - Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
B25J 19/00 - Accessories fitted to manipulators, e.g. for monitoring, for viewingSafety devices combined with or specially adapted for use in connection with manipulators
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
41.
SYSTEMS AND METHODS FOR PROVIDING MODULAR ARCHITECTURES FOR ROBOTIC END EFFECTORS
A robotic gripper includes a first modular component comprising a set of deformable members, such as a set of vacuum cups or foam members. The robotic gripper also includes a second modular component comprising a set of vacuum valves. Each vacuum valve in the set of vacuum valves is fluidly connected to at least one deformable member in the set of deformable members.
A robotic gripper includes a first modular component comprising a set of deformable members, such as a set of vacuum cups or foam members. The robotic gripper also includes a second modular component comprising a set of vacuum valves. Each vacuum valve in the set of vacuum valves is fluidly connected to at least one deformable member in the set of deformable members.
A recipient communication device and method wherein a user authenticates a message that is being received. The method includes receiving, by a messaging utility of the recipient communication device, a message transmitted from a sender communication device. The messaging utility determines that one of (a) sender authentication of the message and (b) recipient authentication to open the message is required. In response to sender authentication being required, the recipient communication device transmits a request to the sender communication device for sender authentication of the message, and receives a certification of the message based on an authentication of a user input via the sender communication device. When recipient authentication is required, the recipient is prompted to enter biometric input at the recipient device. In one embodiment, a clearinghouse service authenticates a user of a communication device in order for the recipient communication device to receive certification of the user and/or the message.
G06F 21/32 - User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
G06F 21/64 - Protecting data integrity, e.g. using checksums, certificates or signatures
H04L 9/32 - Arrangements for secret or secure communicationsNetwork security protocols including means for verifying the identity or authority of a user of the system
H04W 12/069 - Authentication using certificates or pre-shared keys
A method of manipulating boxes includes receiving a minimum box size for a plurality of boxes varying in size located in a walled container. The method also includes dividing a grip area of a gripper into a plurality of zones. The method further includes locating a set of candidate boxes based on an image from a visual sensor. For each zone, the method additionally includes, determining an overlap of a respective zone with one or more neighboring boxes to the set of candidate boxes. The method also includes determining a grasp pose for a target candidate box that avoids one or more walls of the walled container. The method further includes executing the grasp pose to lift the target candidate box by the gripper where the gripper activates each zone of the plurality of zones that does not overlap a respective neighboring box to the target candidate box.
Systems and methods are described for detecting changes at a location based on image data by a mobile robot. A system can instruct navigation of the mobile robot to a location. For example, the system can instruct navigation to the location as part of an inspection mission. The system can obtain input identifying a change detection. Based on the change detection and obtained image data associated with the location, the system can perform the change detection and detect a change associated with the location. For example, the system can perform the change detection based on one or more regions of interest of the obtained image data. Based on the detected change and a reference model, the system can determine presence of an anomaly condition in the obtained image data.
G05D 1/689 - Pointing payloads towards fixed or moving targets
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
Systems and methods are described for detecting changes at a location based on image data by a mobile robot. A system can instruct navigation of the mobile robot to a location. For example, the system can instruct navigation to the location as part of an inspection mission. The system can obtain input identifying a change detection. Based on the change detection and obtained image data associated with the location, the system can perform the change detection and detect a change associated with the location. For example, the system can perform the change detection based on one or more regions of interest of the obtained image data. Based on the detected change and a reference model, the system can determine presence of an anomaly condition in the obtained image data.
G05D 1/249 - Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons from positioning sensors located off-board the vehicle, e.g. from cameras
G05D 1/246 - Arrangements for determining position or orientation using environment maps, e.g. simultaneous localisation and mapping [SLAM]
G05D 1/689 - Pointing payloads towards fixed or moving targets
A dynamic planning controller receives a maneuver for a robot and a current state of the robot and transforms the maneuver and the current state of the robot into a nonlinear optimization problem. The nonlinear optimization problem is configured to optimize an unknown force and an unknown position vector. At a first time instance, the controller linearizes the nonlinear optimization problem into a first linear optimization problem and determines a first solution to the first linear optimization problem using quadratic programming. At a second time instance, the controller linearizes the nonlinear optimization problem into a second linear optimization problem based on the first solution at the first time instance and determines a second solution to the second linear optimization problem based on the first solution using the quadratic programming. The controller also generates a joint command to control motion of the robot during the maneuver based on the second solution.
G05B 13/04 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
Systems and methods are described for outputting light and/or audio using one or more light and/or audio sources of a robot. The light sources may be located on one or more legs of the robot, a bottom portion of the robot, and/or a top portion of the robot. The audio sources may include a speaker and/or an audio resonator. A system can obtain sensor data associated with an environment of the robot. Based on the sensor data, the system can identify an alert. For example, the system can identify an entity based on the sensor data and identify an alert for the entity. The system can instruct an output of light and/or audio indicative of the alert using the one or more light and/or audio sources. The system can adjust parameters of the output based on the sensor data.
A method includes receiving sensor data for an environment about the robot. The sensor data is captured by one or more sensors of the robot. The method includes detecting one or more objects in the environment using the received sensor data. For each detected object, the method includes authoring an interaction behavior indicating a behavior that the robot is capable of performing with respect to the corresponding detected object. The method also includes augmenting a localization map of the environment to reflect the respective interaction behavior of each detected object.
Systems and methods are described for outputting light and/or audio using one or more light and/or audio sources of a robot. The light sources may be located on one or more legs of the robot, a bottom portion of the robot, and/or a top portion of the robot. The audio sources may include a speaker and/or an audio resonator. A system can obtain sensor data associated with an environment of the robot. Based on the sensor data, the system can identify an alert. For example, the system can identify an entity based on the sensor data and identify an alert for the entity. The system can instruct an output of light and/or audio indicative of the alert using the one or more light and/or audio sources. The system can adjust parameters of the output based on the sensor data.
B62D 57/02 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
B62D 57/024 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
Disclosed herein are systems and methods directed to an industrial robot that can perform mobile manipulation (e.g., dexterous mobile manipulation). A robotic arm may be capable of precise control when reaching into tight spaces, may be robust to impacts and collisions, and/or may limit the mass of the robotic arm to reduce the load on the battery and increase runtime. A robotic arm may include differently configured proximal joints and/or distal joints. Proximal joints may be designed to promote modularity and may include separate functional units, such as modular actuators, encoder, bearings, and/or clutches. Distal joints may be designed to promote integration and may include offset actuators to enable a through-bore for the internal routing of vacuum, power, and signal connections.
Techniques and apparatuses for recognizing accented speech are described. In some embodiments, an accent module recognizes accented speech using an accent library based on device data, uses different speech recognition correction levels based on an application field into which recognized words are set to be provided, or updates an accent library based on corrections made to incorrectly recognized speech.
Systems and methods are described for reacting to a feature in an environment of a robot based on a classification of the feature. A system can detect the feature in the environment using a first sensor on the robot. For example, the system can detect the feature using a feature detection system based on sensor data from a camera. The system can detect a mover in the environment using a second sensor on the robot. For example, the system can detect the mover using a mover detection system based on sensor data from a lidar sensor. The system can fuse the data from detecting the feature and detecting the mover to produce fused data. The system can classify the feature based on the fused data and react to the feature based on classifying the feature.
Systems and methods are described for reacting to a feature in an environment of a robot based on a classification of the feature. A system can detect the feature in the environment using a first sensor on the robot. For example, the system can detect the feature using a feature detection system based on sensor data from a camera. The system can detect a mover in the environment using a second sensor on the robot. For example, the system can detect the mover using a mover detection system based on sensor data from a lidar sensor. The system can fuse the data from detecting the feature and detecting the mover to produce fused data. The system can classify the feature based on the fused data and react to the feature based on classifying the feature.
Systems and methods for a perception system for a lower body powered exoskeleton device are provided. The perception system includes a camera configured to capture one or more images of terrain in proximity to the exoskeleton device, an at least one processor. The at least one processor is programmed to perform footstep planning for the exoskeleton device based, at least in part, on the captured one or more images of terrain, and issue an instruction to perform a first action based, at least in part, on the footstep planning.
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
A61F 5/01 - Orthopaedic devices, e.g. long-term immobilising or pressure directing devices for treating broken or deformed bones such as splints, casts or braces
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
An example robot includes: a motor disposed at a joint configured to control motion of a member of the robot; a transmission including an input member coupled to and configured to rotate with the motor, an intermediate member, and an output member, where the intermediate member is fixed such that as the input member rotates, the output member rotates therewith at a different speed; a pad frictionally coupled to a side surface of the output member of the transmission and coupled to the member of the robot; and a spring configured to apply an axial preload on the pad, wherein the axial preload defines a torque limit that, when exceeded by a torque load on the member of the robot, the output member of the transmission slips relative to the pad.
Methods and apparatus for operating a mobile robot in a loading dock environment are provided. The method comprises capturing, by a camera system of the mobile robot, at least one image of the loading dock environment, and processing, by at least one hardware processor of the mobile robot, the at least one image using a machine learning model trained to identify one or more features of the loading dock environment.
Methods and apparatus for determining a pose of an object sensed by a camera system of a mobile robot are described. The method includes acquiring, using the camera system, a first image of the object from a first perspective and a second image of the object from a second perspective, and determining, by a processor of the camera system, a pose of the object based, at least in part, on a first set of sparse features associated with the object detected in the first image and a second set of sparse features associated with the object detected in the second image.
A method of grasping and/or placing multiple objects by a gripper of a mobile robot. The multi-grasp method includes determining one or more candidate groups of objects to grasp by the suction-based gripper of the mobile robot, each of the one or more candidate groups of objects including a plurality of objects, determining a grasp quality score for each of the one or more candidate groups of objects, and grasping, by the suction-based gripper of the mobile robot, all objects in a candidate group of objects based, at least in part, on the grasp quality score. The multi-place method includes determining an allowed width associated with the conveyor, selecting a multi-place technique based, at least in part, on the allowed width and a dimension of the multiple grasped objects, and controlling the mobile robot to place the multiple grasped objects on the conveyor based on the selected multi-place technique.
A method of grasping and/or placing multiple objects by a gripper of a mobile robot. The multi-grasp method includes determining one or more candidate groups of objects to grasp by the suction-based gripper of the mobile robot, each of the one or more candidate groups of objects including a plurality of objects, determining a grasp quality score for each of the one or more candidate groups of objects, and grasping, by the suction-based gripper of the mobile robot, all objects in a candidate group of objects based, at least in part, on the grasp quality score. The multi-place method includes determining an allowed width associated with the conveyor, selecting a multi-place technique based, at least in part, on the allowed width and a dimension of the multiple grasped objects, and controlling the mobile robot to place the multiple grasped objects on the conveyor based on the selected multi-place technique.
A computer-implemented method includes generating a joint-torque-limit model for the articulated arm based on allowable joint torque sets corresponding to a base pose of the base. The method also include receiving a first requested joint torque set for a first arm pose of the articulated arm and determining, using the joint-torque-limit model, an optimized joint torque set corresponding to the first requested joint torque set. The method also includes receiving a second requested joint torque set for a second arm pose of the articulated arm and generating an adjusted joint torque set by adjusting the second requested joint torque set based on the optimized joint torque set. The method also includes sending the adjusted joint torque set to the articulated arm.
An example method may include i) determining a first distance between a pair of feet of a robot at a first time, where the pair of feet is in contact with a ground surface; ii) determining a second distance between the pair of feet of the robot at a second time, where the pair of feet remains in contact with the ground surface from the first time to the second time; iii) comparing a difference between the determined first and second distances to a threshold difference; iv) determining that the difference between determined first and second distances exceeds the threshold difference; and v) based on the determination that the difference between the determined first and second distances exceeds the threshold difference, causing the robot to react.
B62D 57/02 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
B25J 13/08 - Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
Disclosed are techniques that provide a “best” picture taken within a few seconds of the moment when a capture command is received (e.g., when the “shutter” button is pressed). In some situations, several still images are automatically (that is, without the user's input) captured. These images are compared to find a “best” image that is presented to the photographer for consideration. Video is also captured automatically and analyzed to see if there is an action scene or other motion content around the time of the capture command. If the analysis reveals anything interesting, then the video clip is presented to the photographer. The video clip may be cropped to match the still-capture scene and to remove transitory parts. Higher-precision horizon detection may be provided based on motion analysis and on pixel-data analysis.
Embodiments are provided for communicating notifications and other textual data associated with applications installed on an electronic device. According to certain aspects, a user can interface with an input device to send a wake up trigger to the electronic device. The electronic device retrieves application notifications and converts (288) the application notifications to audio data. The electronic device also sends the audio data to an audio output device for annunciation. The user may also use the input device to send a request to the electronic device to activate the display screen. The electronic device identifies an application corresponding to an annunciated notification, and activates the display screen and initiates the application.
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
G10L 13/04 - Details of speech synthesis systems, e.g. synthesiser structure or memory management
67.
Method and apparatus for using image data to aid voice recognition
A device performs a method for using image data to aid voice recognition. The method includes the device capturing image data of a vicinity of the device and adjusting, based on the image data, a set of parameters for voice recognition performed by the device. The set of parameters for the device performing voice recognition include, but are not limited to: a trigger threshold of a trigger for voice recognition; a set of beamforming parameters; a database for voice recognition; and/or an algorithm for voice recognition. The algorithm may include using noise suppression or using acoustic beamforming.
Methods and apparatus for controlling a robotic gripper of a robotic device are provided. The method includes activating a plurality of vacuum assemblies of the robotic gripper to grasp one or more objects, disabling one or more of the plurality of vacuum assemblies having a seal quality with the one or more objects that is less than a first threshold, assigning a score to each of the one or more disabled vacuum assemblies, reactivating the one or more disabled vacuum assemblies in an order based, at least in part, on the assigned scores, and grasping the one or more objects with the robotic gripper when a grasp quality of the robotic gripper is higher than a second threshold.
Methods and apparatus for estimating a ceiling location of a container within which a mobile robot is configured to operate are provided. The method comprises sensing distance measurement data associated with the ceiling of the container using one or more distance sensors arranged on an end effector of a mobile robot, and determining a ceiling estimate of the container based on the distance measurement data.
Methods and apparatus for controlling a robotic gripper of a robotic device are provided. The method includes activating a plurality of vacuum assemblies of the robotic gripper to grasp one or more objects, disabling one or more of the plurality of vacuum assemblies having a seal quality with the one or more objects that is less than a first threshold, assigning a score to each of the one or more disabled vacuum assemblies, reactivating the one or more disabled vacuum assemblies in an order based, at least in part, on the assigned scores, and grasping the one or more objects with the robotic gripper when a grasp quality of the robotic gripper is higher than a second threshold.
Methods and apparatus for automated calibration for a LIDAR system of a mobile robot are provided. The method comprises capturing a plurality of LIDAR measurements. The plurality of LIDAR measurements include a first set of LIDAR measurements as the mobile robot spins in a first direction at a first location, the first location being a first distance to a calibration target, and a second set of LIDAR measurements as the mobile robot spins in a second direction at a second location, the second location being a second distance to the calibration target, wherein the first direction and the second direction are different and the second distance is different than the first distance. The method further comprises processing the plurality of LIDAR measurements to determine calibration data, and generating alignment instructions for the LIDAR system based, at least in part, on the calibration data.
A computer-implemented method, when executed by data processing hardware of a robot having an articulated arm and a base, causes data processing hardware to perform operations. The operations include determining a first location of a workspace of the articulated arm associated with a current base configuration of the base of the robot. The operations also include receiving a task request defining a task for the robot to perform outside of the workspace of the articulated arm at the first location. The operations also include generating base parameters associated with the task request. The operations further include instructing, using the generated base parameters, the base of the robot to move from the current base configuration to an anticipatory base configuration.
A method of identifying stairs from footfalls includes receiving a plurality of footfall locations of a robot traversing an environment. Each respective footfall location indicates a location where a leg of the robot contacted a support surface. The method also includes determining a plurality of candidate footfall location pairs based on the plurality of footfall locations. The candidate footfall location pair includes a first and a second candidate footfall location. The method further includes clustering the first candidate footfall location into a first cluster group based on a height of the first candidate footfall location and clustering the second candidate footfall location into a second cluster group based on a height of the second candidate footfall location. The method additionally includes generating a stair model by representing each of the cluster groups as a corresponding stair and delineating each stair based on a respective midpoint between each adjacent cluster group.
B62D 57/024 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
G06V 10/44 - Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersectionsConnectivity analysis, e.g. of connected components
G06V 10/762 - Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
75.
Systems and methods for controlling movements of robotic actuators
An electronic circuit comprises a charge storing component, a set of one or more switching components coupled to the charge storing component, and an additional switching component coupled to each of the one or more switching components in the set. The additional switching component is configured to operate in a first state or a second state based on a received current or voltage. The first state prevents current to flow from the charge storing component to each of the one or more switching components in the set and the second state allows current to flow from the charge storing component to each of the one or more switching components in the set.
H02P 3/22 - Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an AC motor by short-circuit or resistive braking
H03K 17/56 - Electronic switching or gating, i.e. not by contact-making and -breaking characterised by the use of specified components by the use, as active elements, of semiconductor devices
76.
ANCHORING BASED TRANSFORMATION FOR ALIGNING SENSOR DATA OF A ROBOT WITH A SITE MODEL
Systems and methods are described for the display of a transformed virtual representation of sensor data overlaid on a site model. A system can obtain a site model identifying a site. For example, the site model can include a map, a blueprint, or a graph. The system can obtain sensor data from a sensor of a robot. The sensor data can include route data identifying route waypoints and/or route edges associated with the robot. The system can receive input identifying an association between a virtual representation of the sensor data and the site model. Based on the association, the system can transform the virtual representation of the sensor data and instruct display of the transformed data overlaid on the site model.
G05D 1/222 - Remote-control arrangements operated by humans
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
Systems and methods are described for climbing of objects in an environment of a robot based on sensor data. A system can obtain sensor data of the environment. For example, the system can obtain sensor data from one or more sensors of robot. The system can identify the object based on the sensor data. Further, the system can determine that the object is climbable based on determining that the object corresponds to a particular training object. The system can determine that the object corresponds to the particular training object based on a particular characteristic of the object. The system can identify a climbing operation associated with the training object and instruct the robot to climb on the object based on the climbing operation.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
78.
Robot movement and interaction with massive bodies
The invention includes systems and methods for determining movement of a robot. A computing system of the robot receives information comprising a reference behavior specification, a current state of the robot, and a characteristic of a massive body coupled to or expected to be coupled to the robot. The computing system determines, based on the information, a set of movement parameters for the robot, the set of movement parameters reflecting a goal trajectory for the robot. The computing system instructs the robot to move consistent with the set of movement parameters.
The invention includes systems and methods for fabrication and use of an assembly for a component of a robot. The assembly includes a first member including a set of electrically conductive annular surfaces, and a second member including a set of electrically conductive components configured to contact the set of electrically conductive annular surfaces. The first member and the second member are included within the component of the robot. Each component in the set of electrically conductive components includes a first convex curvilinear portion configured to contact a corresponding annular surface in the set of electrically conductive annular surfaces.
H01R 39/64 - Devices for uninterrupted current collection
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
H01R 13/24 - Contacts for co-operating by abutting resilientContacts for co-operating by abutting resiliently mounted
The invention includes systems and methods for routing data packets in a robot. The method comprises routing, using a first switching device, data packets between a first host processor and a first electronic device of the robot, and routing, using the first switching device, data packets between a second host processor and a second electronic device of the robot.
The invention includes systems and methods for determining movement of a robot. A computing system of the robot receives information comprising a reference behavior specification, a current state of the robot, and a characteristic of a massive body coupled to or expected to be coupled to the robot. The computing system determines, based on the information, a set of movement parameters for the robot, the set of movement parameters reflecting a goal trajectory for the robot. The computing system instructs the robot to move consistent with the set of movement parameters.
An apparatus for a robot includes a set of at least three proximal links. Each proximal link is configured to rotate about a respective joint. Each joint is aligned on a common axis. The apparatus also includes a set of at least three distal links. Each distal link is coupled to a corresponding proximal link and configured to rotate about a second respective joint. Each proximal link comprises an actuator configured to move at least one of the proximal link or the corresponding distal link.
A method of providing a personalized audio briefing to a user is performed at an electronic device. The device receives identification of information sources associated with the user. Each of the information sources is associated with a content type. The device receives an authorization to access the identified information sources and a preferred order of content types for presentation within the audio briefing. It transmits to a remote system the identification, the authorization, and the preferred order. Following the transmitting, the device receives a verbal input from the user requesting the audio briefing. In response to the verbal input, the device receives a response generated by the remote system, including content from the information sources and information inserted by the remote system based on the authorization to access received from the user. The device outputs an audible response according to the preferred order.
G06F 3/0354 - Pointing devices displaced or positioned by the userAccessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
G06F 3/0362 - Pointing devices displaced or positioned by the userAccessories therefor with detection of 1D translations or rotations of an operating part of the device, e.g. scroll wheels, sliders, knobs, rollers or belts
G06F 3/04883 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
G06F 16/635 - Filtering based on additional data, e.g. user or group profiles
H04L 65/612 - Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for unicast
H04L 65/613 - Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for the control of the source by the destination
G10L 13/02 - Methods for producing synthetic speechSpeech synthesisers
G10L 13/04 - Details of speech synthesis systems, e.g. synthesiser structure or memory management
H04R 1/32 - Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
84.
Electrical transfer assemblies for robotic devices
The invention includes systems and methods for fabrication and use of an assembly for a component of a robot. The assembly includes a first member including a set of electrically conductive annular surfaces, and a second member including a set of electrically conductive components configured to contact the set of electrically conductive annular surfaces. The first member and the second member are included within the component of the robot. Each component in the set of electrically conductive components includes a first convex curvilinear portion configured to contact a corresponding annular surface in the set of electrically conductive annular surfaces.
B25J 19/00 - Accessories fitted to manipulators, e.g. for monitoring, for viewingSafety devices combined with or specially adapted for use in connection with manipulators
H05K 1/14 - Structural association of two or more printed circuits
An apparatus for a robot includes a set of at least three proximal links. Each proximal link is configured to rotate about a respective joint. Each joint is aligned on a common axis. The apparatus also includes a set of at least three distal links. Each distal link is coupled to a corresponding proximal link and configured to rotate about a second respective joint. Each proximal link comprises an actuator configured to move at least one of the proximal link or the corresponding distal link.
The invention includes systems and methods for routing data packets in a robot. The method comprises routing, using a first switching device, data packets between a first host processor and a first electronic device of the robot, and routing, using the first switching device, data packets between a second host processor and a second electronic device of the robot.
A method for a stair tracking for modeled and perceived terrain includes receiving, at data processing hardware, sensor data about an environment of a robot. The method also includes generating, by the data processing hardware, a set of maps based on voxels corresponding to the received sensor data. The set of maps includes a ground height map and a map of movement limitations for the robot. The map of movement limitations identifies illegal regions within the environment that the robot should avoid entering. The method further includes generating a stair model for a set of stairs within the environment based on the sensor data, merging the stair model and the map of movement limitations to generate an enhanced stair map, and controlling the robot based on the enhanced stair map or the ground height map to traverse the environment.
B62D 57/024 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
Example methods and devices for touch-down detection for a robotic device are described herein. In an example embodiment, a computing system may receive a force signal due to a force experienced at a limb of a robotic device. The system may receive an output signal from a sensor of the end component of the limb. Responsive to the received signals, the system may determine whether the force signal satisfies a first threshold and determine whether the output signal satisfies a second threshold. Based on at least one of the force signal satisfying the first threshold or the output signal satisfying the second threshold, the system of the robotic device may provide a touch-down output indicating touch-down of the end component of the limb with a portion of an environment.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
G01L 5/00 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
A method for estimating a ground plane of a legged robot includes determining one or more physical contact points of the legged robot based on first sensor information of the legged robot, determining one or more virtual contact points of the legged robot based on second sensor information of the legged robot, determining a ground plane estimation of the ground surface based on both the one or more physical contact points and the one or more virtual contact points, and controlling a pose of the legged robot based on the ground plane estimation.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
A method on a mobile device for a wireless network is described. An audio input is monitored for a trigger phrase spoken by a user of the mobile device. A command phrase spoken by the user after the trigger phrase is buffered. The command phrase corresponds to a call command and a call parameter. A set of target contacts associated with the mobile device is selected based on respective voice validation scores and respective contact confidence scores. The respective voice validation scores are based on the call parameter. The respective contact confidence scores are based on a user context associated with the user. A call to a priority contact of the set of target contacts is automatically placed if the voice validation score of the priority contact meets a validation threshold and the contact confidence score of the priority contact meets a confidence threshold.
Embodiments are provided for communicating notifications and other textual data associated with applications installed on an electronic device. According to certain aspects, a user can interface with an input device to send (218) a wake up trigger to the electronic device. The electronic device retrieves (222) application notifications and converts (288) the application notifications to audio data. The electronic device also sends (230) the audio data to an audio output device for annunciation (232). The user may also use the input device to send (242) a request to the electronic device to activate the display screen. The electronic device identifies (248) an application corresponding to an annunciated notification, and activates (254) the display screen and initiates the application.
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
A method includes obtaining, from an operator of a robot, a return execution lease associated with one or more commands for controlling the robot that is scheduled within a sequence of execution leases. The robot is configured to execute commands associated with a current execution lease that is an earliest execution lease in the sequence of execution leases that is not expired. The method includes obtaining an execution lease expiration trigger triggering expiration of the current execution lease. After obtaining the trigger, the method includes determining that the return execution lease is a next current execution lease in the sequence. While the return execution lease is the current execution lease, the method includes executing the one or more commands for controlling the robot associated with the return execution lease which cause the robot to navigate to a return location remote from a current location of the robot.
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
Methods and apparatus for implementing a safety system for a mobile robot are described. The method comprises receiving first sensor data from one or more sensors, the first sensor data being captured at a first time, identifying, based on the first sensor data, a first unobserved portion of a safety field in an environment of a mobile robot, assigning, to each of a plurality of contiguous regions within the first unobserved portion of the safety field, an occupancy state, updating, at a second time after the first time, the occupancy state of one or more of the plurality of contiguous regions, and determining one or more operating parameters for the mobile robot, the one or more operating parameters based, at least in part, on the occupancy state of at least some regions of the plurality of contiguous regions at the second time.
According to one disclosed method, one or more sensors of a robot may receive data corresponding to one or more locations of the robot along a path the robot is following within an environment on a first occasion. Based on the received data, a determination may be made that one or more stairs exist in a first region of the environment. Further, when the robot is at a position along the path the robot is following on the first occasion, a determination may be made that the robot is expected to enter the first region. The robot may be controlled to operate in a first operational mode associated with traversal of stairs when it is determined that one or more stairs exist in the first region and the robot is expected to enter the first region.
B62D 57/024 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
G05D 1/02 - Control of position or course in two dimensions
A robot leg assembly including a hip joint and an upper leg member. A proximal end portion of the upper leg member rotatably coupled to the hip joint. The robot leg assembly including a knee joint rotatably coupled to a distal end portion of the upper leg member, a lower leg member rotatably coupled to the knee joint, a linear actuator disposed on the upper leg member and defining a motion axis, and a motor coupled to the linear actuator and a linkage coupled to the translation stage and to the lower leg member. The linear actuator includes a translation stage moveable along the motion axis to translate rotational motion of the motor to linear motion of the translation stage along the motion axis, which moves the linkage to rotate the lower leg member relative to the upper leg member at the knee joint.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
A computing system may provide a model of a robot. The model may be configured to determine simulated motions of the robot based on sets of control parameters. The computing system may also operate the model with multiple sets of control parameters to simulate respective motions of the robot. The computing system may further determine respective scores for each respective simulated motion of the robot, wherein the respective scores are based on constraints associated with each limb of the robot and a goal. The constraints include actuator constraints and joint constraints for limbs of the robot. Additionally, the computing system may select, based on the respective scores, a set of control parameters associated with a particular score. Further, the computing system may modify a behavior of the robot based on the selected set of control parameters to perform a coordinated exertion of forces by actuators of the robot.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
An example implementation involves controlling robots with non-constant body pitch and height. The implementation involves obtaining a model of the robot that represents the robot as a first point mass rigidly coupled with a second point mass along a longitudinal axis. The implementation also involves determining a state of a first pair of legs, and determining a height of the first point mass based on the model and the state of the first pair of legs. The implementation further involves determining a first amount of vertical force for at least one leg of the first pair of legs to apply along a vertical axis against a surface while the at least one leg is in contact with the surface. Additionally, the implementation involves causing the at least one leg of the first pair of legs to begin applying the amount of vertical force against the surface.
B62D 57/032 - Vehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legVehicles characterised by having other propulsion or other ground-engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted feet or skid
A kit includes a computing device configured to control motion of equipment for receiving one or more parcels in an environment of a mobile robot. The kit also includes a structure configured to couple to the equipment. The structure comprises an identifier configured to be sensed by a sensor of the mobile robot.