Provided herein is a method for automated control of the gas turbine fuel composition through automated modification of the ratio of fuel gas from multiple sources. The method includes providing first and second fuel sources. The method further includes sensing the operational parameters of a turbine and determining whether the operational parameters are within preset operational limits. The method also adjusting the ration of the first fuel source to the second fuel source, based on whether the operational parameters are within the preset operational limits.
G05B 13/00 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
The present disclosure provides a tuning system for tuning the operation of a gas turbine. The system comprises operational turbine controls for controlling operational control elements of the turbine, including at least one of turbine fuel distribution or the fuel temperature. The system also has a tuning controller communicating with the turbine controls. The tuning controller is configured to tune the operation of the turbine in accordance with the following steps: receiving operational data about the turbine, providing a hierarchy of tuning issues, determining whether sensed operational data is within predetermined operational limits and producing one or more indicators. If the operational data is not within predetermined operational limits, the tuning controller will rank the one or more indicators to determine dominant tuning concern, and tune the operation of the turbine based on dominant tuning concern. Also provided herein are a method and computer readable medium for tuning.
F23N 5/24 - Preventing development of abnormal or undesired conditions, i.e. safety arrangements
F23R 3/34 - Feeding into different combustion zones
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
3.
Automated tuning of gas turbine combustion systems
The present disclosure provides a tuning system for tuning the operation of a gas turbine. The system comprises operational turbine controls for controlling operational control elements of the turbine, including at least one of turbine fuel distribution or the fuel temperature. The system also has a tuning controller communicating with the turbine controls. The tuning controller is configured to tune the operation of the turbine in accordance with the following steps: receiving operational data about the turbine, providing a hierarchy of tuning issues, determining whether sensed operational data is within predetermined operational limits and producing one or more indicators. If the operational data is not within predetermined operational limits, the tuning controller will rank the one or more indicators to determine dominant tuning concern, and tune the operation of the turbine based on dominant tuning concern. Also provided herein are a method and computer readable medium for tuning.
F23N 5/24 - Preventing development of abnormal or undesired conditions, i.e. safety arrangements
F23R 3/34 - Feeding into different combustion zones
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
4.
Automated tuning of multiple fuel gas turbine combustion systems
Provided herein is a method for automated control of the gas turbine fuel composition through automated modification of the ratio of fuel gas from multiple sources. The method includes providing first and second fuel sources. The method further includes sensing the operational parameters of a turbine and determining whether the operational parameters are within preset operational limits. The method also adjusting the ration of the first fuel source to the second fuel source, based on whether the operational parameters are within the preset operational limits.
F02C 9/28 - Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
G05B 13/00 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
The present disclosure provides a tuning system for tuning the operation of a gas turbine. The system comprises operational turbine controls for controlling operational control elements of the turbine, including at least one of turbine fuel distribution or the fuel temperature. The system also has a tuning controller communicating with the turbine controls. The tuning controller is configured to tune the operation of the turbine in accordance with the following steps: receiving operational data about the turbine, providing a hierarchy of tuning issues, determining whether sensed operational data is within predetermined operational limits and producing one or more indicators. If the operational data is not within predetermined operational limits, the tuning controller will rank the one or more indicators to determine dominant tuning concern, and tune the operation of the turbine based on dominant tuning concern. Also provided herein are a method and computer readable medium for tuning.
System and method for tuning the operation of a turbine and optimizing the mechanical life of a heat recovery steam generator. Provided therewith is a turbine controller, sensor means for sensing operational parameters, control means for adjusting operational control elements. The controller is adapted to tune the operation of the gas turbine in accordance to preprogrammed steps and in response to operational priorities selected by a user. The operational priorities preferably comprise optimal heat recovery steam generator life.
A system for tuning the operation of a gas turbine is provided based on measuring operational parameters of the turbine and directing adjustment of operational controls for various operational elements of the turbine. A controller is provided for communicating with sensors and controls within the system. The controller receiving operational data from the sensors and comparing the data to stored operational standards to determining if turbine operation conforms to the standards. The controller then communicates selected adjustment in an operational parameter of the turbine. The controller then receives additional operational data from the sensors to determine if an additional adjustment is desired or is adjustment is desired of a further selected operational parameter.
Method for automated control of the gas turbine fuel composition through automated modification of the ratio of fuel gas from multiple sources The method includes providing first and second fuel sources, sensing the operational parameters of a turbine, determining whether the operational parameters are within preset operational limits and adjusting the ratio of the first fuel source to the second filet source, based on whether the operational parameters are within the preset operational limits.
Method for automated control of the gas turbine fuel composition through automated modification of the ratio of fuel gas from multiple sources. The method includes providing first and second fuel sources, sensing the operational parameters of a turbine, determining whether the operational parameters are within preset operational limits and adjusting the ratio of the first fuel source to the second fuel source, based on whether the operational parameters are within the preset operational limits.
System and method for tuning the operation of a turbine and optimizing the mechanical life of a heat recovery steam generator. Provided therewith is a turbine controller, sensor means for sensing operational parameters, control means for adjusting operational control elements. The controller is adapted to tune the operation of the gas turbine in accordance to preprogrammed steps and in response to operational priorities selected by a user. The operational priorities preferably comprise optimal heat recovery steam generator life.
Provided herein is a method for automated control of the gas turbine fuel composition through automated modification of the ratio of fuel gas from multiple sources. The method includes providing first and second fuel sources. The method further includes sensing the operational parameters of a turbine and determining whether the operational parameters are within preset operational limits. The method also adjusting the ration of the first fuel source to the second fuel source, based on whether the operational parameters are within the preset operational limits.
F01K 21/00 - Steam engine plants not otherwise provided for
G05B 13/00 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
F02C 9/28 - Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
Provided herein is a system and method for tuning the operation of a turbine and optimizing the mechanical life of a heat recovery steam generator. Provided therewith is a turbine controller, sensor means for sensing operational parameters, control means for adjusting operational control elements. The controller is adapted to tune the operation of the gas turbine in accordance preprogrammed steps in response to operational priorities selected by a user. The operational priorities preferably comprise optimal heat recovery steam generator life.
A compressor wash system for compressor washing includes stages of fluid delivery lines coupled at one end to a pump output and at the other end to a corresponding nozzle set. A control valve is connected to the fluid delivery line between the pump and the nozzle set, selectively supplying fluid between the pump and the nozzle set. Each nozzle of a nozzle set is positioned on an inlet of the compressor to allow the stages to wash a portion of the compressor. Nozzle sets are positioned around a bellmouth assembly and/or around an inlet cone of the compressor inlet, with a nozzle spray tip of each nozzle extending into an inlet air flow path of the compressor. Fluid may be directed to one or more of the stages in a sequencing pattern determined and configured to wash the compressor. Templates and installation guides are utilized to position the nozzles.
The present disclosure provides a tuning system for tuning the operation of a gas turbine. The system comprises operational turbine controls for controlling operational control elements of the turbine, including at least one of turbine fuel distribution or the fuel temperature. The system also has a tuning controller communicating with the turbine controls. The tuning controller is configured to tune the operation of the turbine in accordance with the following steps: receiving operational data about the turbine, providing a hierarchy of tuning issues, determining whether sensed operational data is within predetermined operational limits and producing one or more indicators. If the operational data is not within predetermined operational limits, the tuning controller will rank the one or more indicators to determine dominant tuning concern, and tune the operation of the turbine based on dominant tuning concern. Also provided herein are a method and computer readable medium for tuning.
A compressor wash system for compressor washing includes stages of fluid delivery lines coupled at one end to a pump output and at the other end to a corresponding nozzle set. A control valve is connected to the fluid delivery line between the pump and the nozzle set, selectively supplying fluid between the pump and the nozzle set. Each nozzle of a nozzle set is positioned on an inlet of the compressor to allow the stages to wash a portion of the compressor. Nozzle sets are positioned around a bellmouth assembly and/or around an inlet cone of the compressor inlet, with a nozzle spray tip of each nozzle extending into an inlet air flow path of the compressor. Fluid may be directed to one or more of the stages in a sequencing pattern determined and configured to wash the compressor. Templates and installation guides are utilized to position the nozzles.
A system for tuning the operation of a gas turbine is provided based on measuring operational parameters of the turbine and directing adjustment of operational controls for various operational elements of the turbine. A controller is provided for communicating with sensors and controls within the system. The controller receiving operational data from the sensors and comparing the data to stored operational standards to determining if turbine operation conforms to the standards. The controller then communicates selected adjustment in an operational parameter of the turbine. The controller then receives additional operational data from the sensors to determine if an additional adjustment is desired or is adjustment is desired of a further selected operational parameter.
A system for tuning the operation of a gas turbine is provided based on measuring operational parameters of the turbine and directing adjustment of operational controls for various operational elements of the turbine. A controller is provided for communicating with sensors and controls within the system. The controller receiving operational data from the sensors and comparing the data to stored operational standards to determining if turbine operation conforms to the standards. The controller then communicates selected adjustment in an operational parameter of the turbine. The controller then receives additional operational data from the sensors to determine if an additional adjustment is desired or is adjustment is desired of a further selected operational parameter.
F02C 9/28 - Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
F02C 9/34 - Joint control of separate flows to main and auxiliary burners
F02D 43/00 - Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
A secondary nozzle is provided for a gas turbine. The secondary nozzle includes a flange and an elongated nozzle body extending from the flange. At least one premix fuel injector is spaced radially from the nozzle body and extends from the flange generally parallel to the nozzle body. At least one second nozzle tube is fluidly connected to the fuel source and spaced radially outward from the first nozzle tube with a proximal end fixed to the flange. The second nozzle tube has a distal end, spaced from the proximal end, with at least one aperture therein. A passageway extends between the proximal end and the distal end of the second nozzle tube, with the passageway fluidly connecting to the fuel source and the aperture.
A combustor for a gas turbine is provided having a nozzle assembly located at one end and a combustion chamber defining a second end of the combustor. A venturi is positioned within the combustor, between the nozzle and the combustion chamber. The venturi defines a passageway therein having a first side facing the nozzle and a second side facing the combustion chamber. Compressed air is directed into an inlet in fluid communication with the first and second sides of the venturi passageway. The venturi passageway directs the compressed air from the inlet in opposite directions within the first and second sides of the passageway for cooling the venturi.
A combustor for a gas turbine is provided having a nozzle assembly located at one end and a combustion chamber defining a second end of the combustor. A venturi is positioned within the combustor, between the nozzle and the combustion chamber. The venturi defines a passageway therein having a first side facing the nozzle and a second side facing the combustion chamber. Compressed air is directed into an inlet in fluid communication with the first and second sides of the venturi passageway. The venturi passageway directs the compressed air from the inlet in opposite directions within the first and second sides of the passageway for cooling the venturi.
A secondary nozzle is provided for a gas turbine. The secondary nozzle includes a flange and an elongated nozzle body extending from the flange. At least one premix fuel injector is spaced radially from the nozzle body and extends from the flange generally parallel to the nozzle body. At least one second nozzle tube is fluidly connected to the fuel source and spaced radially outward from the first nozzle tube with a proximal end fixed to the flange. The second nozzle tube has a distal end, spaced from the proximal end, with at least one aperture therein. A passageway extends between the proximal end and the distal end of the second nozzle tube, with the passageway fluidly connecting to the fuel source and the aperture.
A combustor for a gas turbine is provided having a nozzle assembly located at one end and a combustion chamber defining a second end of the combustor. A venturi is positioned within the combustor, between the nozzle and the combustion chamber. The venturi defines an internal passageway therein having a first side facing the nozzle and a second side facing the combustion chamber. Compressed air is directed into an inlet in fluid communication with the first and second sides of the internal passageway. The internal passageway directs the compressed air from the inlet in opposite directions within the first and second sides of the internal passageway for cooling the venturi.
F23R 3/42 - Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
A fluid delivery skid with a pre-fill system for supplying fluid has one or more stages including a first valve and a second valve, each having an open and closed position. The stages have active and inactive states to provide a desired flow rate of fluid to an apparatus for distribution of the fluid. In an active state, fluid is received in the stage and pressurized with the first valve open and the second valve closed. Further, in an active state, fluid is released with the first valve closed and the second open. In an inactive state, at least the second valve is closed. A control unit is connected to a pump unit and controls operation of the pump to regulate the stages to supply pressure at a level determined to achieve the desired flow rate.
F02C 7/00 - Features, component parts, details or accessories, not provided for in, or of interest apart from, groups Air intakes for jet-propulsion plants
A nozzle assembly for cleaning turbines includes an offline cleaning nozzle and a pair of online cleaning nozzles. The offline cleaning nozzle directs cleaning fluid towards the inlet of turbine. The online cleaning nozzles direct a cleaning fluid in a fan-shaped pattern in a direction substantially parallel to the direction of air flow within the turbine's inlet air duct, and intersecting with each other. The longest dimension of the fan-shaped spray pattern is substantially parallel to the direction of air flow within the duct.
The present invention discloses a method and system for augmenting shaft output of stationary gas turbines that can be used in multiple modes of operation. The system comprises a washing unit (25, 27, 28) adapted to inject a spray (26) of atomized liquid so as to impinge on the compressor blades (12) in order to wet said blades (12), thereby obtaining a release of fouling material from said blades (12); and at least one liquid injection unit (21, 23, 24, 29, 210, 212, 214, 215, 216) adapted to inject a spray (22, 211, 213) of atomized liquid into an air stream of said turbine duct (101) or at the gas turbine (10) in order to increase a mass flow of said air flow, wherein the power output from said gas turbine engine can be augmented. With the invention follows also benefits such as fuel savings and improved environmental performance by reduction of emissions.
The present invention discloses a method and system for augmenting shaft output of stationary gas turbines that can be used in multiple modes of operation. The system comprises a washing unit (25, 27, 28) adapted to inject a spray (26) of atomized liquid so as to impinge on the compressor blades (12) in order to wet said blades (12), thereby obtaining a release of fouling material from said blades (12); and at least one liquid injection unit (21, 23, 24, 29, 210, 212, 214, 215, 216) adapted to inject a spray (22, 211, 213) of atomized liquid into an air stream of said turbine duct (101) or at the gas turbine (10) in order to increase a mass flow of said air flow, wherein the power output from said gas turbine engine can be augmented. With the invention follows also benefits such as fuel savings and improved environmental performance by reduction of emissions.
F02C 3/30 - Adding water, steam or other fluids to the combustible ingredients or to the working fluid before discharge from the turbine
F02C 7/00 - Features, component parts, details or accessories, not provided for in, or of interest apart from, groups Air intakes for jet-propulsion plants
27.
Nozzle and method for washing gas turbine compressors
A nozzle (54) for cleaning a gas turbine unit (1) during operation. The invention further relates to a method for washing a gas turbine unit (1) during operation. The nozzle (54) is arranged to atomize a wash liquid in the air stream in an air intake (2) of the gas turbine unit (1) and comprises a nozzle body (40) comprising an intake end (41) for intake of said wash liquid and outlet end (55) for exit of said wash liquid. The nozzle further comprises a number of orifices (42, 46; 42, 46, 60) that are connected to the outlet end (55) and respective orifice (42, 46; 42, 46, 60) is arranged at a suitable distance from a center axis (49) of said nozzle body (40), whereby the local density of the injected wash liquid in a desired area can be increased with preserved droplet size and thereby the efficiency of the cleaning process can be significantly improved at the same time as the risk for damaging the components in the gas turbine unit is significantly reduced.
B08B 3/02 - Cleaning by the force of jets or sprays
B05B 1/14 - Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openingsNozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with strainers in or outside the outlet opening