An energy storage device, such as a capacitor or battery, is provided with a detector and detector support for signaling an expansion of the case caused by a buildup of internal pressure, wherein the detector support is provided with a base attached to a periphery of a side of the case, and the detector support has a superstructure for positioning the detector over an interior of the side of the case, whereby the interior expands a greater distance than the periphery of the side of the case in response to internal pressure.
H01M 10/48 - Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
H01M 10/42 - Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
H01M 6/50 - Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
H01M 2/34 - Current-conducting connections for cells with provision for preventing undesired use or discharge
H01G 9/26 - Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices with each other
A capacitor assembly is providing for adapting a replacement capacitor to an existing circuit board layout. The capacitor assembly has an adapter with a plate and the replacement capacitor affixed thereto, and the adapter has terminals which are connected to the leads of the replacement capacitor. The adapter further has leads, such as pins, extending downward from the plate, to electrically connect the capacitor assembly to the circuit board.
H05K 3/22 - Secondary treatment of printed circuits
H05K 3/34 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
3.
HERMETICALLY SEALED ELECTROLYTIC CAPACITOR WITH DOUBLE CASE
An electrolytic capacitor is provided having an inner case housing a capacitor element and an electrolyte, which is sealed by an inner cap insulated from the body of the inner case by a gasket, with the anode terminal of the capacitor element connected to the inside face of the inner cap and an anode lead connected to the outside face of the inner cap. The inner case is placed in an outer case having a sleeve surrounding the body of the inner case and an outer cap with a hermetic seal overlaying the inner cap. An insulating spacer is positioned between the inner cap and the outer cap, whereby the spacer resists movement of the inner cap, thereby preventing outward expansion of the inner case, which otherwise might lead to failure, especially at relatively high operating temperatures.
An electrolytic capacitor is provided having an inner case housing a capacitor element and an electrolyte, which is sealed by an inner cap insulated from the body of the inner case by a gasket, with the anode terminal of the capacitor element connected to the inside face of the inner cap and an anode lead connected to the outside face of the inner cap. The inner case is placed in an outer case having a sleeve surrounding the body of the inner case and an outer cap with a hermetic seal overlaying the inner cap. An insulating spacer is positioned between the inner cap and the outer cap, whereby the spacer resists movement of the inner cap, thereby preventing outward expansion of the inner case, which otherwise might lead to failure, especially at relatively high operating temperatures.
A capacitor assembly is provided with a plurality of wound capacitor elements aligned horizontally in a longitudinally extended housing, whereby the largest capacitor element solely occupies a tier in the housing, another tier in the housing is solely occupied by two of the capacitor elements, and wherein the capacitor elements are configurable to provide various capacitance values.
H01G 11/82 - Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
H01G 5/019 - Means for correcting the capacitance characteristics
An electrolytic capacitor capable of operating a 75 g or greater is provided having a case with a base and a lid, with a wound capacitor element positioned on its side, lengthwise along the bottom of the base and with the underside of the lid pressed against the length of the capacitor element, to frictionally engage the capacitor element. The case is provided with inwardly projecting surfaces, including a bulkhead at one end of the capacitor element and ridges on the lid, which function as barriers to restrict movement of the capacitor element within the case. A compartment is created at one end of the case, to allow space for terminals, which are embedded in a non-conductive support matrix.
An electrolytic capacitor capable of operating at 75 g or greater is provided having a case with a base and a lid, with a wound capacitor element positioned on its side, lengthwise along the bottom of the base and with the underside of the lid pressed against the length of the capacitor element, to frictionally engage the capacitor element. The case is provided with inwardly projecting surfaces, including a bulkhead at one end of the capacitor element and ridges on the lid, which function as barriers to restrict movement of the capacitor element within the case. A compartment is created at one end of the case, to allow space for terminals, which are embedded in a non-conductive support matrix.
A capacitor is provided having a capacitor element, with first and second metalized thermoplastic sheets, which are offset and wound together to create common edges at opposite ends, a zinc or zinc-rich conductive coating thermally sprayed on each of the common edges of the capacitor element, and aluminum or aluminum-rich terminals welded to each of the conductive coatings to form a metallurgical bond, having a pull strength of at least 5 pounds, without damaging the capacitor element.
A hermetically sealed, electrolytic capacitor is provided having a lid incorporating a liquid seal on the wet side of the lid and a hermetic seal on the dry side of the lid. The lid includes a plate, with a hole through its thickness, and a flange creating an orifice in the hole, adjacent the underside of the lid. A liquid seal is positioned in the orifice and has a terminal insulated from the plate by an elastomeric ring. The terminal is electrically connected to the capacitor element on its wet side, and the terminal is electrically connected to the hermetic seal on its dry side.
An electrolytic capacitor is provided having a metal-glass-metal hermetic seal and a liquid seal, which protects the hermetic seal from the electrolyte solution in the capacitor. The liquid seal is formed by compressing an elastomeric ring between the underside of the lid of the capacitor and a terminal plate, connected to the capacitor element, whereby compression of the elastomeric seal is maintained by the lead, which connects the terminal plate and a metal post in the hermetic seal.