Systems and methods for computing a hair-coloring composition (HCC) or for dispensing ingredients for the HCC are disclosed herein. In some embodiments, the system comprises a hair-treatment objective-prioritization user interface (HTOP UI) for receiving multi-objective relative-importance data describing a relative importance of different hair-treatment objectives (e.g. immediate post-treatment accuracy versus auxiliary goals, or one auxiliary goal versus another) for a potential hair-coloring treatment. In some embodiments, a hair-coloring-composition (HCC) prediction-engine is responsive to input received via the HTOP UI to compute, from the initial hair-state data and from the target color-state, a customized hair-coloring composition predicted to transform a color state of the user's hair from the initial color state to the target color state. This may be performed according to the multi-objective relative-importance data.
A45D 44/00 - Other cosmetic or toiletry articles, e.g. for hairdressers' rooms
A45D 19/00 - Devices for washing the hair or the scalp; Similar devices for colouring the hair
G01J 3/50 - Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
G16H 20/70 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mental therapies, e.g. psychological therapy or autogenous training
G01J 3/46 - Measurement of colour; Colour measuring devices, e.g. colorimeters
An apparatus and method for customized hair-coloring is disclosed. In some embodiments the method comprises: a. performing a plurality of light-scattering measurements upon a sample of hair such that for each light-scattering measurement, the sample of hair is illuminated from a different respective direction; b. comparing the results of the light-scattering measurements; c. in accordance with results of the comparing, computing an initial damage-state of hair of the sample by comparing the results of the light-scattering measurements; d. obtaining an initial color-state of the hair of the sample; and e. computing a hair-coloring composition that is predicted to transform the hair sample from the initial color-state to a target color-state such that in response to a determining of a greater (lesser) extent of initial damage, a concentration of artificial-colorant(s) within the computed coloring composition is reduced (increased).
A support device configured to be coupled to a dispensing container that includes a tilt valve stem for dispensing a cosmetic cream. The support device includes a cap made of a plastic material that includes an opening for receiving the tilt valve stem and an outer surface configured to attach to the dispensing container, wherein the outer surface attaches to the dispensing container via threads; and a valve configured to be disposed between an inner surface of the cap and the tilt valve stem, the valve being configured to reinforce a return force experience by the stem.
A system for optically acquiring data from hair comprises a hair-holder including: upper and lower plate assemblies respectively having downward-facing and upward-facing opposing surfaces defining a gap therebetween, the lower plate assembly having a window-void therein, the upper plate assembly further comprising a sideward-facing sample-thickness-regulating surface above the gap; and an alignment-wall mechanically coupled to both plate assemblies and having a side-facing alignment surface within gap or sideward-facing into the gap, the alignment surface being straight along a longitudinal direction parallel to both of the opposing surfaces, the hair-holder being configured so that: when an externally-tensioned sample of hair is loaded onto the hair-holder by laterally moving the sample towards the alignment surface, a presence of the sideward-facing sample-thickness-regulating surface regulates an amount of hair permitted to enter the gap, thereby regulating a thickness of hair above the window-void to at least 0.5 mm and at most 2 mm, and after the loading and after release of the external tension, static friction applied by the side-facing alignment surface upon shafts of the hair sample maintain alignment of hair above the window-void.
The present disclosure relates to devices and methods for analyzing hair and/or predicting an outcome of hair-coloring treatment. disclosed is method of predicting a result of a hair-color-modifying treatment on a sample of hair, the method comprising: a. for each given region of a plurality of distinct regions, respectively measuring a region-specific spectrum of respective material of the hair-sample respectively disposed within the given region; and b. computing first and second predicted post-treatment spectra respectively from first and second initial spectra by respectively predicting a transformation of the first and second initial spectra following subjecting the sample of hair to the hair-color-modifying treatment, the first and second initial spectra being distinct and (i) derived from the plurality of measured region-specific spectra and/or (ii) corresponding to first and second of the measured region-specific spectra.
A61B 5/103 - Measuring devices for testing the shape, pattern, size or movement of the body or parts thereof, for diagnostic purposes
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
G01J 3/46 - Measurement of colour; Colour measuring devices, e.g. colorimeters
G01N 21/84 - Systems specially adapted for particular applications
B01F 13/10 - Mixing plant, including combinations of dissimilar mixers
G01N 21/25 - Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
G01N 21/01 - Arrangements or apparatus for facilitating the optical investigation
An apparatus and method for customized hair-coloring is disclosed. In some embodiments the method comprises: a. performing a plurality of light-scattering measurements upon a sample of hair such that for each light-scattering measurement, the sample of hair is illuminated from a different respective direction; b. comparing the results of the light-scattering measurements; c. in accordance with results of the comparing, computing an initial damage-state of hair of the sample by comparing the results of the light-scattering measurements; d. obtaining an initial color-state of the hair of the sample; and e. computing a hair-coloring composition that is predicted to transform the hair sample from the initial color-state to a target color-state such that in response to a determining of a greater (lesser) extent of initial damage, a concentration of artificial-colorant(s) within the computed coloring composition is reduced (increased).
Novel systems and methods for performing treatment (e.g., coloration) of keratinous fibers are disclosed. The methods and systems utilize one or more of a dispensing device which is configured to provide customized composition for treating keratinous fibers (e.g., a coloring composition), optionally formed from tablets; an optical reader, for obtaining sufficient characteristics of the keratinous fibers to make a realistic prediction of the outcome of a treatment (e.g., coloring treatment); a computational units for predicting an outcome of a treatment, optionally being interfaced with the dispensing device and for selecting a customized treatment; and tablet formulations which are useful in preparing customized composition for treating keratinous fibers. Further disclosed are rapidly disintegrating tablets for use in the preparation of compositions for treating keratinous fibers.
A61Q 5/10 - Preparations for permanently dyeing the hair
B65D 83/04 - Containers or packages with special means for dispensing contents for dispensing annular, disc-shaped, or spherical or like small articles, e.g. tablets or pills
G01N 21/27 - Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection
B65D 1/02 - Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
A61K 8/02 - Cosmetics or similar toiletry preparations characterised by special physical form
The present disclosure relates to hair readers, dispenser devices, and related systems and methods. For example the present application relates to a method of optically acquiring data from keratinous fibers, the method comprising: a. illuminating the keratinous fibers such that light reflected and/or deflected and/or transmitted by the fibers is incident upon a detector and converted into electrical signals by the detector; and b. computing, from electrical signals, a plurality of spectra of the keratinous fibers such that each spectrum of the plurality of spectra respectively corresponds to (i) a different respective portion of the keratinous fibers and/or (ii) material within a different sub-region of space within which at least a portion of the keratinous fibers are disposed.
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
G01N 21/84 - Systems specially adapted for particular applications
Novel systems and methods for performing treatment (e.g., coloration) of keratinous fibers are disclosed. The methods and systems utilize one or more of a dispensing device which is configured to provide customized composition for treating keratinous fibers (e.g., a coloring composition), optionally formed from tablets; an optical reader, for obtaining sufficient characteristics of the keratinous fibers to make a realistic prediction of the outcome of a treatment (e.g., coloring treatment); a computational units for predicting an outcome of a treatment, optionally being interfaced with the dispensing device and for selecting a customized treatment; and tablet formulations which are useful in preparing customized composition for treating keratinous fibers. Further disclosed are rapidly disintegrating tablets for use in the preparation of compositions for treating keratinous fibers.
A61K 8/81 - Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
Novel systems and methods for performing treatment (e.g., coloration) of keratinous fibers are disclosed. The methods and systems utilize one or more of a dispensing device which is configured to provide customized composition for treating keratinous fibers (e.g., a coloring composition), optionally formed from tablets; an optical reader, for obtaining sufficient characteristics of the keratinous fibers to make a realistic prediction of the outcome of a treatment (e.g., coloring treatment); a computational units for predicting an outcome of a treatment, optionally being interfaced with the dispensing device and for selecting a customized treatment; and tablet formulations which are useful in preparing customized composition for treating keratinous fibers. Further disclosed are rapidly disintegrating tablets for use in the preparation of compositions for treating keratinous fibers.
G01N 21/27 - Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection
B65D 83/04 - Containers or packages with special means for dispensing contents for dispensing annular, disc-shaped, or spherical or like small articles, e.g. tablets or pills
Novel systems and methods for performing treatment (e.g., coloration) of keratinous fibers are disclosed. The methods and systems utilize one or more of a dispensing device which is configured to provide customized composition for treating keratinous fibers (e.g., a coloring composition), optionally formed from tablets; an optical reader, for obtaining sufficient characteristics of the keratinous fibers to make a realistic prediction of the outcome of a treatment (e.g., coloring treatment); a computational units for predicting an outcome of a treatment, optionally being interfaced with the dispensing device and for selecting a customized treatment; and tablet formulations which are useful in preparing customized composition for treating keratinous fibers. Further disclosed are rapidly disintegrating tablets for use in the preparation of compositions for treating keratinous fibers.
A61K 8/81 - Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
A device for inspecting a hair sample. The device comprises a measuring area configured to accommodate a hair sample and an imaging unit for receiving light flux reflected from the measuring area. The imaging unit outputs an image of the hair sample located in the measuring area. The device further comprises a spectral-analysis unit configured for receiving the light flux. The spectral-analysis unit outputs spectral analysis measurements of the hair sample according to the received light flux.
An apparatus for analyzing a sample hair mixture having a mixture of two hair colors and an overall spectrum representative of the two colors, comprising: a first color selector, configured to select a first spectrum representative of a first color in the hair mixture from a first group of at least one spectrum, and an iterative spectrum combiner, associated with the first color selector and configured to iteratively combine therewith a second spectrum representative of a second color in the hair mixture from a second group of spectra over the first spectrum, thereby to find an optimal combination of first and second spectrum which is a closest match to the overall spectrum.
A system for determining hair color treatment, including a processor. The processor is configured for: receiving as input an initial spectrum of a sample of hair, the initial spectrum having a wavelength range; calculating a new spectrum of the hair due to a hypothetical hair color treatment as a direct function of the initial spectrum; and outputting data to a device, the data being based upon the step of calculating. The system also includes a spectrum analyzer configured for producing the initial spectrum and a display device configured for displaying a color and hair color treatment instructions based on the data. An alternate embodiment of the invention includes a color mixing device configured for dispensing a hair color treatment based on the data.