A storage tank includes a tank roof and a tank sidewalk. At least one opening is located in at least one of the tank roof or the tank sidewalk. A pipe extends through the at least one opening, the pipe having a sleeve assembly positioned around the pipe. The sleeve assembly also extends through the opening. The sleeve assembly includes a sleeve, at least one layer of insulation, and an inner flange. The inner flange is located on a first end of the sleeve and is coupled to the pipe. The sleeve, in turn is coupled to the tank such that the inner flange is located within the storage tank. The at least one layer of insulation is positioned in an annul us between the pipe and the sleeve.
A storage tank includes a tank roof and a tank sidewalk. At least one opening is located in at least one of the tank roof or the tank sidewalk. A pipe extends through the at least one opening, the pipe having a sleeve assembly positioned around the pipe. The sleeve assembly also extends through the opening. The sleeve assembly includes a sleeve, at least one layer of insulation, and an inner flange. The inner flange is located on a first end of the sleeve and is coupled to the pipe. The sleeve, in turn is coupled to the tank such that the inner flange is located within the storage tank. The at least one layer of insulation is positioned in an annul us between the pipe and the sleeve.
A method of designing a self-shielding tank is disclosed. The method includes calculating a wind pressure loading and a projectile impact loading for the tank. Finite element analysis results are generated for the tank based on the calculated wind pressure loading and projectile impact loading. Tank geometry and features based on analysis results are determined and compared to acceptance criteria. The generated finite element analysis results are limited by a specified degree of plastic deformation.
An apparatus and method for raising a self-jacking scaffold system including extending a jacking screw and jacking screw bracket axially upward, connecting a jacking screw bracket to an overhead tank bracket for a plurality of scaffold sections coupled to a jacking assembly, detaching a plurality of scaffold mounting brackets from a plurality of tank mounting brackets, raising the continuously coupled plurality of scaffold sections, and reattaching the plurality of scaffold mounting brackets to a plurality of tank mounting brackets. Noting the plurality of scaffold sections is continuously coupled proximate a circumference of a shell tank, the continuously coupled scaffold sections and tank mounting brackets provide stiffness to the tank shell to enable it to resist external loads and can be quickly moved and restored as required during tank construction.
B66F 3/08 - Devices, e.g. jacks, adapted for uninterrupted lifting of loads screw-operated
B66F 3/46 - Combinations of several jacks with means for interrelating lifting or lowering movements
B66F 11/04 - Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
E04G 3/20 - Scaffolds essentially supported by building constructions, e.g. adjustable in height supported by walls
E04G 3/24 - Scaffolds essentially supported by building constructions, e.g. adjustable in height specially adapted for particular parts of buildings or for buildings of particular shape, e.g. chimney stacks or pylons
E04G 3/28 - Mobile scaffoldsScaffolds with mobile platforms
An apparatus and method for raising a self-jacking scaffold system including extending a jacking screw and jacking screw bracket axially upward, connecting a jacking screw bracket to an overhead tank bracket for a plurality of scaffold sections coupled to a jacking assembly, detaching a plurality of scaffold mounting brackets from a plurality of tank mounting brackets, raising the continuously coupled plurality of scaffold sections, and reattaching the plurality of scaffold mounting brackets to a plurality of tank mounting brackets. Noting the plurality of scaffold sections is continuously coupled proximate a circumference of a shell tank, the continuously coupled scaffold sections and tank mounting brackets provide stiffness to the tank shell to enable it to resist external loads and can be quickly moved and restored as required during tank construction.
E04G 3/24 - Scaffolds essentially supported by building constructions, e.g. adjustable in height specially adapted for particular parts of buildings or for buildings of particular shape, e.g. chimney stacks or pylons
6.
METHOD AND APPARATUS FOR INSULATING A VOID IN A COMPONENT OF A LOW-TEMPERATURE OR CRYOGENIC STORAGE TANK
A new process for insulating the void in a thermal distance piece m a low-temperature or cryogenic storage tank uses a vacuum source to draw insulation into the TDP. Two remotely spaced openings to the void are provided. A strainer is temporarily mounted in one of the openings. The other opening is connected to a suction wand. The wand has an inner cylinder that extends through an outer cylinder and projects outwardlyfrom a proximal end of the outer cylinder. Distal air vents are provided on the inner cylinder, near a distal cap that connects distal ends of the cylinders. Proximal air vents are provided on a proximal cap that connects a portion of the inner cylinder to a proximal end of the outer cylinder. The distal end of the wand is inserted into a container of insulation. When a vacuum is drawn through the opening with the strainer, the insulation is drawn through the wand and into the void.
A new process for insulating the void in a thermal distance piece in a low-temperature or cryogenic storage tank uses a vacuum source to draw insulation into the TDP. Two remotely spaced openings to the void are provided. A strainer is temporarily mounted in one of the openings. The other opening is connected to a suction wand. The wand has an inner cylinder that extends through an outer cylinder and projects outwardly from a proximal end of the outer cylinder. Distal air vents are provided on the inner cylinder, near a distal cap that connects distal ends of the cylinders. Proximal air vents are provided on a proximal cap that connects a portion of the inner cylinder to a proximal end of the outer cylinder. The distal end of the wand is inserted into a container of insulation. When a vacuum is drawn through the opening with the strainer, the insulation is drawn through the wand and into the void.
The disclosed liquid storage tank has a concrete tower section. A steel tank shell above the tower section encompasses a tank volume that has a capacity of at least 100,000 U.S. gallons. A concrete ringbeam at the top of the tower section surrounds an internal area between the ringbeam and an access tube that extends from within the tank volume into an interior of the tower section. The ringbeam has an integral upper wall above a ring-shaped, upwardly-facing supporting face that is at least about 4" inches wide and resists downward forces. A series of laterally adjacent concrete dome segments creates a dome that has a vaulted upper surface and essentially covers the internal area. Each of the dome segments has an outer end that sits on the supporting face of the ringbeam, and an inner end that is positioned above the outer end. Lateral sides on each segment define a segment angle, and the sum of the segment angles of the adjacent segments is less than 360 degrees. Fill sections extend between adjacent dome segments. A pourback creates a continuous surface from the top of the upper wall on the ringbeam to a raised portion of the dome segments. A steel liner covers the dome. The liner has a vaulted upper surface and is connected to the tank shell. In building the tank, precast dome segments can be temporarily supported, with the support being removed after all the segments are placed.
A new procedure for constructing cryogenic storage tanks involves erecting a freestanding metal liner. The liner is sized and configured to withstand the hydraulic forces the concrete wall of the tank being poured without the need for temporary stiffeners on the inside surface of lower portions of the liner. Lateral tension ties can be connected to anchor ties on an outward surface of the liner and used to tie the liner to outer formwork. These ties may be spaced up to about 2 m apart. Studs can also be provided on the outer surface of the liner, and a cylindrical ring of cryogenic steel can be integrated into the liner.
A new procedure for constructing cryogenic storage tanks involves erecting a freestanding metal liner. The liner is sized and configured to withstand the hydraulic forces the concrete wall of the tank being poured without the need for temporary stiffeners on the inside surface of lower portions of the liner. Lateral tension ties can be connected to anchor ties on an outward surface of the liner and used to tie the liner to outer formwork. These ties may be spaced up to about 2 m apart. Studs can also be provided on the outer surface of the liner, and a cylindrical ring of cryogenic steel can be integrated into the liner.
The assembly includes a boil-off gas line that carries storage tank boil-off gas to a condenser that uses condensing liquid from the liquid send-out line to condense the gas. A level control valve on the condensing liquid line actively controls the flow of condensing liquid based on the liquid level in the condenser. A check valve prevents liquid from the send-out line from flowing into the condenser through the condensate line that discharges condensate from the condenser to the send-out line.
A storage tank with a full-contact floating roof (10) is provided with automatic drains (22) that have drain openings (56) that are elevated above the top surface (16) of the deck (14) of the roof. Tilting mechanisms are used to tilt the deck toward the drains, causing liquid on the deck surface to pool at the drains, rising to the level of the drain openings. Cables (70) connected to elevated portions of the tank can be used to tilt the deck from above, and landing supports (100) can be used to tilt the deck from below.
A storage tank with a full-contact floating roof (10) is provided with automatic drains (22) that have drain openings (56) that are elevated above the top surface (16) of the deck (14) of the roof. Tilting mechanisms are used to tilt the deck toward the drains, causing liquid on the deck surface to pool at the drains, rising to the level of the drain openings. Cables (70) connected to elevated portions of the tank can be used to tilt the deck from above, and landing supports (100) can be used to tilt the deck from below.
A structure for extreme thermal cycling has a support element that supports a vessel primarily by bearing and frictional forces rather than by welds. The support element has a bearing portion that tapers inwardly beneath a knuckle that separates a cylindrical section of the vessel from a sloped lower section. The bearing portion of the support element follows that slope, providing an extended area of contact between the support element and the vessel. An annular section of the support element can be heated and expanded before placing it around the cylindrical section of the vessel to provide pre-stressing. If required, a strap may extend downwardly from the vessel over an upper edge of the support element.
A vacuum column for oil distillation incorporates a thickened plate that has a layer of erosion-resistant material that is thicker than the corrosion- resistant thickness of an adjacent column section. Use of thickened, explosive- or roll-bonded clad plates may provide better service than either conventional plug-welded liners or conventional shell plates with weld overlays.
A low-profile secondary seal for floating-roof storage tanks has a tip seal (32) that is mounted on a series of segmental adapter plates (34) connected to the shoe plates. A fabric (36) extends between the tip seal and the floating roof. A spring (38) presses the tip seal against the tank shell.
B65D 88/46 - Large containers having floating covers, e.g. floating roofs or blankets with sealing means between cover rim and receptacle with mechanical means acting on the seal
An egg-shaped anaerobic sludge digester has upper and lower draft tubes, and an optional middle draft tube. The draft tubes are arranged so that liquid can be (1) simultaneously pumped downwards through the upper (or middle) draft tube and upwards through the lower (or middle) draft tube; (2) simultaneously pumped upwards through two or more draft tubes; or (3) simultaneously pumped downwards through two or more draft tubes. When a middle draft tube is provided, it can be used in place of the upper draft tube when the liquid surface in the digester falls below the top of the upper draft tube. Alternatively, the middle draft tube can work as a coordinated relay conduit to move liquid either in the same direction as the upper draft tube or to move liquid in the same direction as the lower draft tube.