A decoupled plating system is provided for producing lithium. In a general embodiment, the present disclosure provides a feed tank configured to supply a lithium-rich aqueous electrolyte stream, a plating tank that is configured to receive an organic electrolyte and plate out lithium metal from that organic electrolyte, and one or more lithium replenishment cells configured to receive both electrolytes, keep them separated, and selectively move lithium ions from the aqueous electrolyte into the spent organic electrolyte stream. The present system and process can advantageously reduce operating costs and/or improve energy efficiency in production of lithium metal and associated products.
C03C 4/18 - Compositions for glass with special properties for ion-sensitive glass
C03C 10/00 - Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
C25C 1/02 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of light metals
A decoupled plating system is provided for producing lithium. In a general embodiment, the present disclosure provides a feed tank configured to supply a lithium-rich aqueous electrolyte stream, a plating tank that is configured to receive an organic electrolyte and plate out lithium metal from that organic electrolyte, and one or more lithium replenishment cells configured to receive both electrolytes, keep them separated, and selectively move lithium ions from the aqueous electrolyte into the spent organic electrolyte stream. The present system and process can advantageously reduce operating costs and/or improve energy efficiency in production of lithium metal and associated products.
C03C 4/18 - Compositions for glass with special properties for ion-sensitive glass
C03C 10/00 - Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
C25C 1/02 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of light metals
A pre-lithiated electrode that has not undergone a charge cycle and contains high purity lithium is obtained by electrodeposition of lithium onto an electrode using a selective lithium ion conducting layer. The electrodeposition process can provide lithium intercalated into or plated onto the electrode. The pre-lithiated electrode advantageously offsets the loss of lithium capacity that occurs during the first charge/discharge cycle in a lithium ion battery.
A method of forming a lithium metal film is provided. In a general embodiment, the present disclosure provides a deposition cell comprising an anode and a substrate provided within the deposition cell. A lithium ion containing electrolyte is flowed across a surface of the substrate, and a voltage is applied to the substrate to deposit a lithium metal film onto the substrate from the lithium ion containing electrolyte. The voltage is controlled to be substantially constant within a range of -3.7 to -4 volts relative to an AgCl/Ag reference electrode or a constant current is used that stabilizes within a voltage range of -3.7 to -4 volts relative to an AgCl/Ag reference electrode. The present method can advantageously form a lithium metal film that has an optically smooth surface morphology and nano-rod structures.
C25D 5/02 - Electroplating of selected surface areas
C25D 17/00 - Constructional parts, or assemblies thereof, of cells for electrolytic coating
C23C 28/02 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and only coatings of metallic material
C25D 3/54 - ElectroplatingBaths therefor from solutions of metals not provided for in groups
C25D 3/02 - ElectroplatingBaths therefor from solutions
C03C 4/06 - Compositions for glass with special properties for photosensitive glass for phototropic or photochromic glass
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
A decoupled plating system is provided for producing lithium. In a general embodiment, the present disclosure provides a feed tank configured to supply a lithium-rich aqueous electrolyte stream, a plating tank that is configured to receive an organic electrolyte and plate out lithium metal from that organic electrolyte, and one or more lithium replenishment cells configured to receive both electrolytes, keep them separated, and selectively move lithium ions from the aqueous electrolyte into the spent organic electrolyte stream. The present system and process can advantageously reduce operating costs and/or improve energy efficiency in production of lithium metal and associated products.
High purity lithium and associated products are provided. In a general embodiment, the present disclosure provides a lithium metal product in which the lithium metal is obtained using a selective lithium ion conducting layer. The selective lithium ion conducting layer includes an active metal ion conducting glass or glass ceramic that conducts only lithium ions. The present lithium metal products produced using a selective lithium ion conducting layer advantageously provide for improved lithium purity when compared to commercial lithium metal. Pursuant to the present disclosure, lithium metal having a purity of at least 99.96 weight percent on a metals basis can be obtained.
A process is provided for producing lithium directly from a lithium feed solution selected from the group consisting of lithium chloride brine, lithium sulfate spodumene liquor, lithium hydroxide, and a combination thereof. The lithium feed solution is provided in an electrolysis cell comprising a cathode suitable for electrolysis of lithium, and an anode. An ionizing electric current is provided to the electrolysis cell, thereby providing lithium metal at the cathode. The present process can advantageously streamline the lithium production process, reduce operating costs, and/or improve energy efficiency in production of lithium.
High purity lithium and associated products are provided. In a general embodiment, the present disclosure provides a lithium metal product in which the lithium metal is obtained using a selective lithium ion conducting layer. The selective lithium ion conducting layer includes an active metal ion conducting glass or glass ceramic that conducts only lithium ions. The present lithium metal products produced using a selective lithium ion conducting layer advantageously provide for improved lithium purity when compared to commercial lithium metal. Pursuant to the present disclosure, lithium metal having a purity of at least 99.96 weight percent on a metals basis can be obtained.
High purity lithium and associated products are provided. In a general embodiment, the present disclosure provides a lithium metal product in which the lithium metal is obtained using a selective lithium ion conducting layer. The selective lithium ion conducting layer includes an active metal ion conducting glass or glass ceramic that conducts only lithium ions. The present lithium metal products produced using a selective lithium ion conducting layer advantageously provide for improved lithium purity when compared to commercial lithium metal. Pursuant to the present disclosure, lithium metal having a purity of at least 99.96 weight percent on a metals basis can be obtained.