A method of storing nuclear fuel is described. In some cases, the method includes submerging at least a portion of a nuclear fuel rod in a storage pool containing an aqueous solution including at least one of polyhedral boron hydride anions or carborane anions. In some cases, the method includes adding a salt having a polyhedral boron hydride anion or carborane anion to a storage pool containing water and at least a portion of a nuclear fuel rod submerged in it. The method may include both of these. A storage pool is also described. The storage pool includes an aqueous solution having at least one of polyhedral boron hydride anions or carborane anions with at least a portion of a nuclear fuel rod submerged in the aqueous solution. A method of servicing a nuclear reactor core is also described.
Described herein is a method for making a metal matrix composite material comprising: (a) forming a metal box comprising a bottom forming plate having a length and a width, a first pair of side forming plates having a length and a height, and a second pair of side forming plates having a width and a height; (b) mixing a metal powder and a ceramic powder to prepare a mixed powder; (c) filling the metal box with the mixed powder; (d) compacting the mixed powder in the metal box to provide the metal box comprising a compacted powder preform; (e) disposing a top forming plate onto the metal box in solid abutment against the metal box comprising the compacted powder preform and sealing around its edges to produce a pre-rolling assembly; and (f) performing hot working on the pre-rolling assembly to obtain the metal matrix composite material with a metal cladding.
B22F 3/17 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by forging
B22F 3/18 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by using pressure rollers
B22F 3/20 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sinteringApparatus specially adapted therefor by extruding
3.
METHOD OF COOLING NUCLEAR REACTOR AND NUCLEAR REACTOR INCLUDING POLYHEDRAL BORON HYDRIDE OR CARBORANE ANIONS
A method of cooling a nuclear reactor core is disclosed. The method includes contacting the nuclear reactor core with an aqueous solution comprising at least one of polyhedral boron hydride anions or carborane anions. Nuclear reactors are also disclosed. The nuclear reactor has a neutron moderator that is an aqueous solution comprising at least one of polyhedral boron hydride anions or carborane anions, or the nuclear reactor has an emergency core cooling system including a vessel containing a volume of an aqueous solution comprising at least one of polyhedral boron hydride anions or carborane anions. The nuclear reactor can also have both an aqueous solution comprising at least one of polyhedral boron hydride anions or carborane anions as a neutron moderator and an emergency core cooling system that includes an aqueous solution comprising at least one of polyhedral boron hydride anions or carborane anions.
G21C 5/12 - Moderator or core structureSelection of materials for use as moderator characterised by composition, e.g. the moderator containing additional substances which ensure improved heat resistance of the moderator
G21C 9/033 - Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse by an absorbent fluid
An armor bolt, comprising a head portion cut from armor steel and a threaded shaft porton welded to the head portion. This bolt can be used for mounting add-on armor to a vehicle, and avoids any ballistic leaks at the bolt connections.
06 - Common metals and ores; objects made of metal
09 - Scientific and electric apparatus and instruments
11 - Environmental control apparatus
17 - Rubber and plastic; packing and insulating materials
19 - Non-metallic building materials
21 - HouseHold or kitchen utensils, containers and materials; glassware; porcelain; earthenware
37 - Construction and mining; installation and repair services
42 - Scientific, technological and industrial services, research and design
Goods & Services
Metal curtain walls; Substrates primarily of metal for supporting solar panels and modules and photovoltaic panels and modules Apparatus for converting electronic radiation to electrical energy, namely, photovoltaic solar panels and modules, roofing panels and modules and cladding panels and modules; Electronic devices for monitoring and optimizing photovoltaic arrays; Photovoltaic cells and modules; Photovoltaic systems that convert sunlight into electric and thermal energy; Apparatus for converting electronic radiation to electrical energy, namely, photovoltaic thermal module; Apparatus for converting thermal energy to electrical energy, namely, thermoelectric converters; Photovoltaic cells and walls also including a solar thermal collector sold as a unit; Glass covered with an electrical conductor; Electronic monitors and monitor modules for monitoring electric current and electrical signals in building wall systems; Automated process control system, namely, micro-processor based hardware and software used to monitor the status of industrial processes, namely, power generation and electrical distribution; Non-metal photovoltaic systems consisting primarily of photovoltaic cells, panels and modules, photovoltaic inverters and cladding panels Solar heat collection panels and modules Semi-finished plastic films and sheets to be used in solar or photovoltaic panels and modules; Substrates primarily of ceramic, silicon and non-metals for electrical or thermal insulation of solar panels and modules and photovoltaic panels and modules Non-metal curtain wall systems consisting primarily of glass, plastic and other non-metal curtain walls; Building glass; Modified sheet and plate glass for building; Wired sheet and plate glass for building Unworked or semi-worked glass for use in manufacture of solar panels and modules and photovoltaic panels and modules Construction, installation and maintenance of photovoltaic wall systems, panels and modules; Construction, installation and maintenance of solar panels and modules for production of electricity and thermal energy Design of photovoltaic wall systems; Technology planning and consulting in the field of solar energy, specifically specializing in substrates primarily of ceramic, silicon and non-metals for electrical or thermal insulation of solar panels and modules and photovoltaic panels and modules
6.
Dense silicon nitride body having high strength, high Weibull modulus and high fracture toughness
1/2), and has reinforcing grains longer than 5 μm, typically longer than 10 μm in the microstructure without compromising its properties and reliability. The product of this invention can be processed using a variety of densification methods, including gas-pressure sintering, hot pressing, hot isostatic pressing, but is not limited to these, and does not require multiple heat treatments for all of these features to be achieved.
Silicon nitride materials with high strength, fracture toughness values, and Weibull moduli simultaneously, due to unique large grain reinforcing microstructures and well engineered grain boundary compositions. The invention demonstrates that, surprisingly and contrary to prior art, a silicon nitride material can be made which simultaneously has high strength above about 850-900 MPa, a Weibull above about 15 and high fracture toughness (above about 8 and 9 MPa.m1/2), and has reinforcing grains longer than 5 μm, typically longer than 10 μm in the microstructure without compromising its properties and reliability. The product of this invention can be processed using a variety of densification methods, including gas-pressure sintering, hot pressing, hot isostatic pressing, but is not limited to these, and does not require multiple heat treatments for all of these features to be achieved.
C04B 35/00 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products
8.
High lifetime consumable silicon nitride-silicon dioxide plasma processing components
A method of increasing mean time between cleans of a plasma etch chamber and chamber parts lifetimes is provided. Semiconductor substrates are plasma etched in the chamber while using at least one sintered silicon nitride component exposed to ion bombardment and/or ionized halogen gas. The sintered silicon nitride component includes high purity silicon nitride and a sintering aid consisting of silicon dioxide. A plasma processing chamber is provided including the sintered silicon nitride component. A method of reducing metallic contamination on the surface of a silicon substrate during plasma processing is provided with a plasma processing apparatus including one or more sintered silicon nitride components. A method of manufacturing a component exposed to ion bombardment and/or plasma erosion in a plasma etch chamber, comprising shaping a powder composition consisting of high purity silicon nitride and silicon dioxide and densifying the shaped component.
C23C 16/50 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
C23C 16/22 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
H01L 21/306 - Chemical or electrical treatment, e.g. electrolytic etching
C23F 1/00 - Etching metallic material by chemical means
B22F 3/04 - Compacting only by applying fluid pressure
C23C 16/44 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
A thrust bearing assembly comprising a bearing runner and a bearing carrier, the carrier defining a plurality of thrust pad sites annularly around the carrier, with a thrust pad disposed at a site and with the carrier limiting movement of the thrust pad in a direction generally radial to the longitudinal axis of the runner while allowing the thrust pad to move in a direction generally parallel to the longitudinal axis. Though the range of movement is limited, the pads can tilt under load to form a hydrodynamic wedge as is known in the art. An embodiment comprises a bearing runner having a wear resistant face and a bearing carrier defining thrust pad sites disposed annularly around the carrier. In one implementation, at each site, a deflection element (e.g., Belleville washer) is disposed in a cavity and a pad is disposed over the deflection element. The pad can be at least partially disposed within the cavity. The wear resistant face contacts the pad. Another embodiment rigidly connects pads disposed on opposite sides of a stationary bearing carrier. Another embodiment attaches pads to a bearing carrier using pad holder assemblies.
A thrust bearing assembly comprising a bearing runner and a bearing carrier, the carrier defining thrust pad sites annularly around the carrier, with a thrust pad disposed at a site and with the carrier limiting movement of the thrust pad in a direction generally radial to the longitudinal axis of the runner while allowing the thrust pad to move in a direction generally parallel to the longitudinal axis. The pads can tilt under load to form a hydrodynamic wedge. A runner may have a wear resistant face. In one implementation, at each site, a deflection element (e.g., Belleville washer) is at least partially disposed within a cavity and a pad is disposed over the deflection element. The wear resistant face contacts the pad. Another embodiment rigidly connects pads disposed on opposite sides of a stationary bearing carrier. Another embodiment attaches pads to a bearing carrier using pad holder assemblies.
An ion source is disclosed which includes a gas reaction chamber. The invention also includes a method of converting a gaseous feed material into a tetramer, dimer, other molecule or atomic species by supplying the feed material to the gas reaction chamber wherein the feed material is converted to the appropriate gas species to be supplied to the ion source and ionized. More particularly, the gas reaction chamber is configured to receive hydride and other feed materials in gaseous form, such as, AsH3 or PH3, and generate various molecular and atomic species for use in ion implantation, heretofore unknown. In one embodiment of the invention, the gas is relatively uniformly heated to provide relatively accurate control of the molecular or atomic species generated. In an alternate embodiment of the invention, the gas reaction chamber uses a catalytic surface to convert the feed gas into the different source gas specie required for implantation, such as, hydrides into tetramer molecules. In yet another embodiment of the invention, the gas reaction chamber is configured so that a catalytic (or pyrolytic) reaction occurs in the presence of an appropriate material including glass or metals such as, W, Ta, Mo.stainless steel, ceramics, boron nitride or other refractory metals, raised to an appropriate temperature.
The invention provides new methods for synthesis of ClusterBoron (B18H22). Preferred methods of the invention include in situ generation of the conjugate acid of B20H182- and degradation of the acid in solution to produce B18H22 in high yields and high purity. The invention further provides isotopically enriched boranes, particularly isotopically enriched 10B)18H22 and 11B18H22.
The invention provides new methods for synthesis of ClusterBoronꡞ (B18H22). Preferred methods of the invention include generation of the conjugate acid of B20H182- and degradation of the acid in solution to produce B18H22 in high yields and high purity. The invention further provides isotopically enriched boranes, particularly isotopically enriched 10B18H22 and 11B18H22.
A method of increasing mean time between cleans of a plasma etch chamber and chamber parts lifetimes is provided. Semiconductor substrates are plasma etched in the chamber while using at least one sintered silicon nitride component exposed to ion bombardment and/or ionized halogen gas. The sintered silicon nitride component includes high purity silicon nitride and a sintering aid consisting of silicon dioxide. A plasma processing chamber is provided including the sintered silicon nitride component. A method of reducing metallic contamination on the surface of a silicon substrate during plasma processing is provided with a plasma processing apparatus including one or more sintered silicon nitride components. A method of manufacturing a component exposed to ion bombardment and/or plasma erosion in a plasma etch chamber, comprising shaping a powder composition consisting of high purity silicon nitride and silicon dioxide and densifying the shaped component.
The invention provides new methods for synthesis of ClusterBoron (B18H22). Preferred methods of the invention include generation of the conjugate acid of B20HI 82- and degradation of the acid in solution to produce B18H22 in high yields and high purity. The invention further provides isotopically enriched boranes, particularly isotopically enriched 10B18H22 and 11B18H22.
The invention features in-situ cleaning process for an ion source and associated extraction electrodes and similar components of the ion-beam producing system, which chemically removes carbon deposits, increasing service lifetime and performance, without the need to disassemble the system. In particular, an aspect of the invention is directed to an activating, catalytic, or reaction promoting species added to the reactive species to effectively convert the non-volatile molecular residue into a volatile species which can be removed by conventional means.
An ion implantation device and a method of manufacturing a semiconductor device is described, wherein ionized carborane cluster ions are implanted into semiconductor substrates to perform doping. of the substrate. The carborane cluster ions have the chemical form C2B10Hx+, C2B8Hx+ and C4B18Hx+ and are formed from carborane cluster molecules of the form C2B10H12,C2B8H10 and C4B18H22 The use of such carborane molecular clusters results in higher doping concentrations at lower implant energy to provide high dose low energy implants. In accordance with one aspect of the invention, the carborane cluster molecules may be ionized by direct electron impact ionization or by way of a plasma.
A new type of triode extraction system, a Cluster Ion Beam Extraction System, is disclosed for broad energy range cluster ion beam extraction applications while still being applicable to atomic and molecular ion species as well. The extraction aperture plate contours are set to minimize the beam cross over and at the same time shield the source from excess extraction electric fields thus allowing smaller values of the extraction gap. In addition, a novel focusing feature is integrated into these new optics which allows the beam to be either focused or de-focused in the non-dispersive plane by using a bipolar bias voltage of only a few kV over a broad range of beam energy. This is a superior solution to a stand-alone electrostatic lens solution, for example an einzel lens, which would require tens of kV of bias voltage in order to be able to focus an energetic beam.
A method of semiconductor manufacturing is disclosed in which doping is accomplished by the implantation of ion beams formed from ionized molecules, and more particularly to a method in which molecular and cluster dopant ions are implanted into a substrate with and without a co-implant of non-dopant cluster ion, such as a carbon cluster ion, wherein the dopant ion is implanted into the amorphous layer created by the co-implant in order to reduce defects in the crystalline structure, thus reducing the leakage current and improving performance of the semiconductor junctions Dopant ion compounds of the form AnHx+ and AnRzHx+ are used in order to minimize crystal defects as a result of ion implantation
Vapor delivery systems and methods that control the heating and flow of vapors from solid feed material, especially material that comprises cluster molecules for semiconductor manufacture. The systems and methods safely and effectively conduct the vapor to a point of utilization, especially to an ion source for ion implantation. Ion beam implantation is shown employing ions from the cluster materials. The vapor delivery system includes reactive gas cleaning of the ion source, control systems and protocols, wide dynamic range flow-control systems and vaporizer selections that are efficient and safe. Borane, decarborane, carboranes, carbon clusters and other large molecules are vaporized for ion implantation. Such systems are shown cooperating with novel vaporizers, ion sources, and reactive cleaning systems.
C23C 16/00 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
A method of and device for implanting semiconductor wafers with ions of N-type clusters of phosphorus (P) or arsenic (As), where the molecular cluster ions have the chemical form A-HX+o,r A-RHX', where A designates either arsenic or phosphorus, n and x are integers with n greater than or equal to 4, and x greater than or equal to 0, and R is a molecule not containing phosphorus or arsenic and which is not injurious to the implantation process These ions are produced from chemical compounds of the form AnHx and AnRHx.
Thermal control is provided for an extraction electrode of an ion-beam producing system that prevents formation of deposits and unstable operation and enables use with ions produced from condensable vapors and with ion sources capable of cold and hot operation. Electrical heating of the extraction electrode is employed for extracting decaborane or octadecaborane ions. Active cooling during use with a hot ion source prevents electrode destruction, permitting the extraction electrode to be of heat-conductive and fluorine-resistant aluminum composition.
A vaporizer unit, that heats solid feed material, especially material comprising cluster molecules for semiconductor manufacture, to a temperature that produces vapor to be ionized, has efficient construction and numerous effective safety features. The heater is located in a detachable top closure member, and serves to maintain a valve in the top closure member at temperature higher than the temperature to which the solid material is heated. The top section is a heat distributor to an interface with the bottom section, the side and bottom walls of the bottom distributing heat received from the interface to surfaces of the cavity exposed to the feed material. Locking, access-preventing and effective use of mechanical and electronic coding provide safety. Borane, decarborane, carbon clusters and other large molecules are vaporized for ion implantation. Such vaporizers cooperating with novel vapor delivery systems and with ion sources are shown.
A multipurpose ion implanter beam line configuration comprising a mass analyzer magnet followed by a magnetic scanner and magnetic collimator combination that introduce bends to the beam path, the beam line constructed for enabling Implantation of common monatomic dopant ion species cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept an ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights.
In a magnetic analysis apparatus, high voltage insulation (86, 94) isolates the magnet excitation coil (40), power leads (90) and cooling fluid lines (92) from the ferromagnetic assembly (26, 28, 30, 32, 34) of a sector magnet, and the coil power supply is disposed in a grounded housing (E). A sleeve (94), containing electrical power leads and cooling fluid lines, forms an insulator through the magnet assembly to the coil (40) and the coil is surrounded by electrical insulation providing electrical isolation from the magnet assembly of least 20 KV. The excitation coil comprises alternating coil segments (80) and cooling plates (82) within an impervious cocoon (86) of insulating material of at least 6mm thickness. Yoke and core members (20, 30, 32, 34) of the magnet assembly are disposed outside of the vacuum housing (20) while pole members (28) extend through and are sealed to walls of the vacuum housing. An ion decelerator (60, 61, 62) is in a housing extension at the same voltage potential as the mass analyzer housing.
H01J 37/00 - Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
26.
ION BEAM APPARATUS AND METHOD FOR ION IMPLANTATION
A multipurpose ion implanter beam line configuration constructed for enabling implantation of common monatomic dopant ion species and cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept an ion beam from a slot-form ion source extraction aperture and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster, the mass selection aperture also capable of being set to a substantially narrower mass-selection width and the analyzer magnet having a resolution at the mass selection aperture sufficient to enable selection of a beam of monatomic dopant ions of substantially a single atomic or molecular weight.
Providing vapor to a vapor-receiving device housed in a high vacuum chamber. An ion beam implanter, as an example, has a removable high voltage ion source within a high vacuum chamber and a vapor delivery system that delivers vapor to the ion source and does not interfere with removal of the ion source for maintenance. For delivering vapor to a vapor-receiving device, such as the high voltage ion source under vacuum, a flow interface device is in the form of a thermally conductive valve block. A delivery extension of the interface device automatically connects and disconnects within the high vacuum chamber with the removable vapor receiving device by respective installation and removal motions. In an ion implanter, the flow interface device or valve block and source of reactive cleaning gas are mounted in a non-interfering way on the electrically insulating bushing that insulates the ion source from the vacuum housing and the ion source may be removed without disturbing the flow interface device. Multiple vaporizers for solid material, provisions for reactive gas cleaning, and provisions for controlling flow are provided in the flow interface device.
A vaporizer unit to heat solid feed material to a temperature that produces vapor to be ionized, has efficient construction and numerous effective safety features. The heater is located in a detachable top closure member, and serves to maintain a valve in the top closure member at temperature higher than the temperature to which the solid material is heated. The top section is a heat distributor to an interface with the bottom section, the side and bottom walls of the bottom distributing heat received from the interface to surfaces of the cavity exposed to the feed material. Borane, decarborane, carbon clusters and other large molecules are vaporized for ion implantation.
Vapor delivery systems and methods that control the heating and flow of vapors from solid feed material, especially material that comprises cluster molecules for semiconductor manufacture. The systems and methods safely and effectively conduct the vapor to a point of utilization, especially to an ion source for ion implantation. Ion beam implantation is shown employing ions from the cluster materials. The vapor delivery system includes reactive gas cleaning of the ion source, control systems and protocols, wide dynamic range flow-control systems and vaporizer selections that are efficient and safe. Borane, decarborane, carboranes, carbon clusters and other large molecules are vaporized for ion implantation. Such systems are shown cooperating with novel vaporizers, ion sources, and reactive cleaning systems.
In a magnetic analysis apparatus, high voltage insulation (86, 94) isolates the magnet excitation coil (40), power leads (90) and cooling fluid lines (92) from the ferromagnetic assembly (26, 28, 30, 32, 34) of a sector magnet, and the coil power supply is disposed in a grounded housing (E). A sleeve (94), containing electrical power leads and cooling fluid lines, forms an insulator through the magnet assembly to the coil (40) and the coil is surrounded by electrical insulation providing electrical isolation from the magnet assembly of least 20 KV. The excitation coil comprises alternating coil segments (80) and cooling plates (82) within an impervious cocoon (86) of insulating material of at least 6mm thickness. Yoke and core members (20, 30, 32, 34) of the magnet assembly are disposed outside of the vacuum housing (20) while pole members (28) extend through and are sealed to walls of the vacuum housing. An ion decelerator (60, 61, 62) is in a housing extension at the same voltage potential as the mass analyzer housing.
A process is disclosed which incorporates implantation of a carbon cluster into a substrate to improve the characteristics of transistor junctions when the substrates are doped with Boron and Phosphorous in the manufacturing of PMOS transistor structures in integrated circuits. There are two processes which result from this novel approach: (1 ) diffusion control for USJ formation; and (2) high dose carbon implantation for stress engineering. Diffusion control for USJ formation is demonstrated in conjunction with a boron or shallow boron cluster implant of the source/drain structures in PMOS. More particularly, first, a cluster carbon ion, such as C-IeHx+, is implanted into the source/drain region at approximately the same dose as the subsequent boron implant; followed by a shallow boron, boron cluster, phosphorous or phosphorous cluster ion implant to form the source/drain extensions, preferably using a borohydride cluster, such as B18Hx+ or BioHx+. Upon subsequent annealing and activation, the boron diffusion is reduced, due to the gettering of interstitial defects by the carbon atoms.
An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx+, B5Hx+, B10Hx+, B18Hx+, P4+ Or As4+, or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.
C23C 16/00 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
33.
Lightweight boron carbide materials with improved mechanical properties and process for their manufacture
3. Also described is a manufacturing process for the above described substantially pore-free, sintered boron carbide materials with high strength and fracture toughness, which can be used for production of large-area parts. This is achieved by liquid phase low temperature-low pressure hot pressing of boron carbide in an argon atmosphere.
C04B 35/563 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbides based on boron carbide
A thrust bearing assembly in which each thrust pad is individually mounted on a deflection element. An embodiment of the invention comprises a rotating bearing runner having a wear resistant face and a stationary bearing carrier defining a plurality of cavities disposed annularly around the carrier. A deflection element, such as a Belleville washer, is disposed in a cavity of the plurality of cavities and a pad is disposed over the deflection element. The pad is at least partially disposed within the cavity. The wear resistant face of the rotating bearing runner contacts the pad.