A cross-flow ion mobility spectrometer consists of two parallel plates defining a volume between them. Analyte ions flow along an axis from an entrance end to an exit end through the volume. An RF confining field tends to guide ions along the axis. An analytical gas flow is established orthogonal to the axis. A DC electrostatic analytical field is oriented in opposition to the analytical gas flow such that the “drag force” on ions of the selected mobility due to the analytical gas flow is balanced by the force on the ions due to the electrostatic analytical field. The selected ions are thereby able to follow a stable path to the exit end of the cross-flow mobility analyzer. However, the force on ions of other than the selected mobility is unbalanced and these ions are deflected and lost.
H01J 49/00 - Particle spectrometers or separator tubes
G01N 27/62 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosolsInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electric discharges, e.g. emission of cathode
H01J 49/36 - Radio frequency spectrometers, e.g. Bennett-type spectrometers Redhead-type spectrometers
2.
APPARATUS AND METHOD FOR CROSS-FLOW ION MOBILITY SPECTROMETRY
A cross-flow ion mobility spectrometer consists of two parallel plates defining a volume between them. Analyte ions flow along an axis from an entrance end to an exit end through the volume. An RF confining field tends to guide ions along the axis. An analytical gas flow is established orthogonal to the axis. A DC electrostatic analytical field is oriented in opposition to the analytical gas flow such that the "drag force" on ions of the selected mobility due to the analytical gas flow is balanced by the force on the ions due to the electrostatic analytical field. The selected ions are thereby able to follow a stable path to the exit end of the cross-flow mobility analyzer. However, the force on ions of other than the selected mobility is unbalanced and these ions are deflected and lost.
G01N 27/62 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosolsInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electric discharges, e.g. emission of cathode
3.
Apparatus and method for cross-flow ion mobility spectrometry
A cross-flow ion mobility spectrometer consists of two parallel plates defining a volume between them. Analyte ions flow along an axis from an entrance end to an exit end through the volume. An RF confining field tends to guide ions along the axis. An analytical gas flow is established orthogonal to the axis. A DC electrostatic analytical field is oriented in opposition to the analytical gas flow such that the “drag force” on ions of the selected mobility due to the analytical gas flow is balanced by the force on the ions due to the electrostatic analytical field. The selected ions are thereby able to follow a stable path to the exit end of the cross-flow mobility analyzer. However, the force on ions of other than the selected mobility is unbalanced and these ions are deflected and lost.
The invention relates to a device for performing electron capture dissociation on multiply charged cations. Provided is an electron emitter which, upon triggering, emits a plurality of low energy electrons suitable for efficient electron capture reactions to occur. Further, the device contains a particle emitter being located proximate to the electron emitter and being capable, upon triggering, to emit a plurality of high energy charged particles substantially in a direction towards the electron emitter in order that the electron emitter receives a portion of the emitted plurality of high energy charged particles and emission of the plurality of low energy electrons is triggered. A volume capable of containing a plurality of multiply charged cations is located in opposing relation to the electron emitter such that the volume receives the plurality of low energy electrons upon emission as to allow electron capture dissociation to occur.
An improved trap-TOF mass spectrometer has a set of electrodes arranged to produce both a quadrupolar RF confining field and a substantially homogeneous dipole field. In operation, ions are first confined by the RF field and then, at a selected time, the RF confining field is discontinued and the dipole field is used to accelerate the ions so as to initiate a TOF MS analysis. The apparatus of the present invention may be used alone or in conjunction with other analyzers to produce mass spectra from analyte ions.
An abridged multipole structure for the transport and selection of ions along a central axis in a vacuum system is constructed from a plurality of rectilinear electrode structures, each having a substantially planar face with a first dimension and a second dimension perpendicular to the first dimension. When a voltage is applied across the second dimension, an electrical potential is produced at the planar face whose amplitude is a linear function of position along the second dimension. Two electrode structures can be arranged parallel to each other with the first dimension extending along the central axis or more electrodes structures can be arranged to form multipole structures with various polygonal cross sections.
An abridged multipole structure for the transport and selection of ions along a central axis in a vacuum system is constructed from a plurality of rectilinear electrode structures, each having a substantially planar face with a first dimension and a second dimension perpendicular to the first dimension. When a voltage is applied across the second dimension, an electrical potential is produced at the planar face whose amplitude is a linear function of position along the second dimension. Two electrode structures can be arranged parallel to each other with the first dimension extending along the central axis or more electrodes structures can be arranged to form multipole structures with various polygonal cross sections. Additional embodiments can act as linear ion traps or Paul ion traps.
An abridged multipole structure for the transport and selection of ions along a central axis in a vacuum system is constructed from a plurality of rectilinear electrode structures, each having a substantially planar face with a first dimension and a second dimension perpendicular to the first dimension. When a voltage is applied across the second dimension, an electrical potential is produced at the planar face whose amplitude is a linear function of position along the second dimension. Two electrode structures can be arranged parallel to each other with the first dimension extending along the central axis or more electrodes structures can be arranged to form multipole structures with various polygonal cross sections. Additional embodiments can be used to excite ions into secular motion, inductively detect the ions, and thereby generate a mass spectrum.
An improved trap-TOF mass spectrometer has a set of electrodes arranged to produce both a quadrupolar RF confining field and a substantially homogeneous dipole field. In operation, ions are first confined by the RF field and then, at a selected time, the RF confining field is discontinued and the dipole field is used to accelerate the ions so as to initiate a TOF MS analysis. The apparatus of the present invention may be used alone or in conjunction with other analyzers to produce mass spectra from analyte ions.
The University of North Carolina at Chapel Hill (USA)
Inventor
Park, Melvin Andrew
Kaplan, Desmond Allen
Ridgeway, Mark
Glish, Gary L.
Abstract
Analyte ions are analyzed first by field asymmetric ion mobility spectrometry (FAIMS) before being analyzed by a mass analyzer. Analyte ions are produced at near atmospheric pressure and transferred via a dielectric capillary into the vacuum system of the mass analyzer. While passing through the capillary, the ions are analyzed by FAIMS via electrodes on the interior wall of the capillary. Improved ion transmission is achieved by providing smooth geometric transitions between the channel in FAIMS analyzer and the channel in the remainder of the capillary.
Analyte ions entrained in a carrier gas are analyzed by parallel flow ion mobility spectrometry prior to analysis by a mass analyzer. An extended ion funnel is located in the vacuum system of the mass analyzer and has an ion focusing section and an ion mobility analyzing section. The carrier gas together with entrained ions is introduced into the ion focusing section where the ions are focused to the axis of the funnel by applied RF voltages. In the ion mobility section, the action of an RF quadrupolar field, the movement of the carrier gas and axial DC field, separates the ions on the basis of their mobilities. The mobility separated ions are released into the mass analyzer where the ions may be further separated on the basis of mass.
In an apparatus for performing a mass spectrometric analysis of a sample, a plurality of electrodes are positioned and driven by RF potentials to form a plurality of adjacent pseudopotential wells. Ions may be manipulated, reacted, analyzed, and ejected from the apparatus in a manner similar to conventional ion traps. In addition, selected ions or groups of ions may be passed from one pseudopotential well to another pseudopotential well without ion losses due to physical obstructions. The apparatus may be used alone or in conjunction with other mass analyzers to produce mass spectra from analyte ions.
Analyte ions entrained in a carrier gas are analyzed by parallel flow ion mobility spectrometry prior to analysis by a mass analyzer. An extended ion funnel is located in the vacuum system of the mass analyzer and has an ion focusing section and an ion mobility analyzing section. The carrier gas together with entrained ions is introduced into the ion focusing section where the ions are focused to the axis of the funnel by applied RF voltages. In the ion mobility section, the action of an RF quadrupolar field, the movement of the carrier gas and axial DC field, separates the ions on the basis of their mobilities. The mobility separated ions are released into the mass analyzer where the ions may be further separated on the basis of mass.
In a Fourier transform mass spectrometer, an ion cyclotron resonance cell includes trapping and reflecting electrodes. Ions are initially trapped via an electrostatic trapping field. After ions have been excited into a coherent cyclotron motion, the trapping field is turned off and the ions are contained using a reflecting field. The reflecting electrostatic field has substantially no radial field components and therefore introduces essentially no magnetron motion into the ion orbits.
In a system for analyzing samples by mass spectrometry, analyte ions are analyzed first by field asymmetric ion mobility spectrometry (FAIMS) before being analyzed by a mass analyzer. The analyte ions are produced in an ion source operating at near atmospheric pressure and transferred via a dielectric capillary into the vacuum system of the mass analyzer. While passing through the capillary, the ions are analyzed by FAIMS via electrodes on the interior wall of the capillary.
In a system for analyzing samples by mass spectrometry, analyte ions are analyzed first by field asymmetric ion mobility spectrometry (FAIMS) before being analyzed by a mass analyzer. The analyte ions are produced in an ion source operating at near atmospheric pressure and transferred via a dielectric capillary into the vacuum system of the mass analyzer. While passing through the capillary, the ions are analyzed by FAIMS via electrodes on the interior wall of the capillary.
Disclosed is an improved method for performing a mass spectrometric analysis of a sample. More specifically, the present invention provides a method wherein analyte is transferred in a spatially coherent manner from a sample to the surface of a semiconductor. Laser light is used to produce gas phase ions directly from analyte adsorbed to the semiconductor surface. Analyte ions and the mass spectra produced therefrom are used to determine the distribution of analyte on the surface of the sample.
An improved trap-TOF mass spectrometer has a set of electrodes arranged to produce both a quadrupolar RF confining field and a substantially homogeneous dipole field. In operation, ions are first confined by the RF field and then, at a selected time, the RF confining field is discontinued and the dipole field is used to accelerate the ions so as to initiate a TOF MS analysis. The apparatus of the present invention may be used alone or in conjunction with other analyzers to produce mass spectra from analyte ions.
The invention relates to a device for performing electron capture dissociation on multiply charged cations. Provided is an electron emitter which, upon triggering, emits a plurality of low energy electrons suitable for efficient electron capture reactions to occur. Further, the device contains a particle emitter being located proximate to the electron emitter and being capable, upon triggering, to emit a plurality of high energy charged particles substantially in a direction towards the electron emitter in order that the electron emitter receives a portion of the emitted plurality of high energy charged particles and emission of the plurality of low energy electrons is triggered. A volume capable of containing a plurality of multiply charged cations is located in opposing relation to the electron emitter such that the volume receives the plurality of low energy electrons upon emission as to allow electron capture dissociation to occur.
An abridged multipole structure for the transport and selection of ions along a central axis in a vacuum system is constructed from a plurality of rectilinear electrode structures, each having a substantially planar face with a first dimension and a second dimension perpendicular to the first dimension. When a voltage is applied across the second dimension, an electrical potential is produced at the planar face whose amplitude is a linear function of position along the second dimension. Two electrode structures can be arranged parallel to each other with the first dimension extending along the central axis or more electrodes structures can be arranged to form multipole structures with various polygonal cross sections. Additional embodiments can be used to excite ions into secular motion, inductively detect the ions, and thereby generate a mass spectrum.