Empirically modulated antenna systems and related methods are disclosed herein. An empirically modulated antenna system includes an antenna and a controller programmed to control the antenna. The antenna includes a plurality of discrete scattering elements arranged in a one- or two-dimensional arrangement. A method includes modulating operational states of at least a portion of a plurality of discrete scattering elements of the antenna in a plurality of different modulation patterns. The plurality of different modulation patterns includes different permutations of the discrete scattering elements operating in different operational states. The method also includes evaluating a performance parameter of the antenna responsive to the plurality of different empirical one- or two-dimensional modulation patterns. The method further includes operating the antenna in one of the plurality of different one- or two-dimensional empirical modulation patterns selected based, at least in part, on the performance parameter.
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
H04B 17/12 - MonitoringTesting of transmitters for calibration of transmit antennas, e.g. of amplitude or phase
H01Q 13/20 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
H04B 17/14 - MonitoringTesting of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
The present technology pertains to a system and method of operation of a metamaterial phase shifter having various use applications. In one aspect of the present disclosure, a phase shifter includes a network of tunable impedance elements and a controller. The controller is coupled to the network of tunable impedance elements and configured to receive a phase shift input value and determine a corresponding tuning voltage to be supplied to each tunable impedance element of the network of tunable impedance elements based on the phase shift input value, the network of tunable impedance element being configured to shift a phase of an input signal based on tuning voltages supplied to the network of tunable impedance elements by the controller.
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 3/40 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elementsArrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture varying the phase by electrical means with phasing matrix
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elementsArrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
3.
Wireless energy transfer systems for networks of interlinked prescribed paths
According to various embodiments, systems and methods for wirelessly transmitting energy to a moving wireless power receiver in a network of interlinked prescribed paths. A position of a wireless power receiver in a network of interlinked prescribed paths is tracked as the wireless power receiver traverses one or more prescribed paths in the network of interlinked prescribed paths. Energy is wirelessly transmitted from one or more wireless power transmitters to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths. Specifically, the energy is wirelessly transmitted to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths as the wireless power receiver traverses the one or more prescribed paths in the network of interlinked prescribed paths.
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/27 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
H02J 50/40 - Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
4.
Non-Gaussian beamforming for wireless power transfer optimization
System and methods are described herein for providing wireless power to a target device, such as a laptop computer, a mobile phone, a vehicle, robot, or an unmanned aerial vehicle or system (UAV) or (UAS). A tunable multi-element transmitter may transmit electromagnetic radiation (EMR) to the target device using any of a wide variety of frequency bands. A location determination subsystem and/or range determination subsystem may determine a relative location, orientation, and/or rotation of the target device. For a target device within a distance range for which a smallest achievable waist of the Gaussian beam of the EMR at an operational frequency is smaller than the multi-element EMR receiver of the target device, a non-Gaussian beamform may be determined to increase efficiency, decrease overheating, reduce spillover, increase total power output of rectenna receivers on the target device, or achieve another target power delivery goal.
H02J 50/70 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
H02J 50/23 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
H04W 52/28 - TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non-transmission
H02J 50/27 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
H01Q 3/24 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
B64C 39/02 - Aircraft not otherwise provided for characterised by special use
H01Q 1/24 - SupportsMounting means by structural association with other equipment or articles with receiving set
H01Q 1/28 - Adaptation for use in or on aircraft, missiles, satellites, or balloons
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 5/335 - Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
5.
Empirically modulated antenna systems and related methods
Empirically modulated antenna systems and related methods are disclosed herein. An empirically modulated antenna system includes an antenna and a controller programmed to control the antenna. The antenna includes a plurality of discrete scattering elements arranged in a one- or two-dimensional arrangement. A method includes modulating operational states of at least a portion of a plurality of discrete scattering elements of the antenna in a plurality of different modulation patterns. The plurality of different modulation patterns includes different permutations of the discrete scattering elements operating in different operational states. The method also includes evaluating a performance parameter of the antenna responsive to the plurality of different empirical one- or two-dimensional modulation patterns. The method further includes operating the antenna in one of the plurality of different one- or two-dimensional empirical modulation patterns selected based, at least in part, on the performance parameter.
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
H04B 17/12 - MonitoringTesting of transmitters for calibration of transmit antennas, e.g. of amplitude or phase
H01Q 13/20 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
H04B 17/14 - MonitoringTesting of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
Systems and methods are provided for various tunable multi-timescale wireless rectification systems. Tunable multi-timescale wireless rectification systems may include multiple feedback control loops, systems, or sub-systems that modify characteristics of components of a wireless rectification system on various timescales. A wireless rectification system may include antennas, impedance-matching components, rectifying devices, DC-to-DC converters, and/or load controllers. Two or more feedback controls may function on different timescales to modify one or more characteristics or functionalities of components of the wireless rectification system in response to monitored AC and/or DC power values at various locations within the wireless rectification system. Feedback controls operating on various timescales may include antenna feedback controls, impedance feedback controls, rectifying feedback controls, and/or DC feedback controls.
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
7.
Wireless energy transfer systems for networks of interlinked prescribed paths
According to various embodiments, systems and methods for wirelessly transmitting energy to a moving wireless power receiver in a network of interlinked prescribed paths. A position of a wireless power receiver in a network of interlinked prescribed paths is tracked as the wireless power receiver traverses one or more prescribed paths in the network of interlinked prescribed paths. Energy is wirelessly transmitted from one or more wireless power transmitters to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths. Specifically, the energy is wirelessly transmitted to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths as the wireless power receiver traverses the one or more prescribed paths in the network of interlinked prescribed paths.
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/27 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
H02J 50/40 - Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
8.
Wireless power receivers that receive power during traversal of a prescribed path
According to various embodiments, a moving wireless power receiver is configured to receive power wirelessly based on a prescribed path of the wireless power receiver. A prescribed path that a moving wireless power receiver traverses is identified. Further, at least one element of the wireless power receiver is controlled based on the prescribed path to change an amount of power received at the wireless power receiver from incident power transmitted by one or more wireless power transmitters. Specifically, the at least one element can be controlled to change the amount of power received at the wireless power receiver as either or both a posture and a position of the wireless power receiver change with respect to the one or more wireless power transmitters as the wireless power receiver traverses the prescribed path.
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/27 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
H01Q 21/28 - Combinations of substantially independent non-interacting antenna units or systems
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
H02J 50/40 - Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
9.
Wireless energy transfer systems for networks of interlinked prescribed paths
According to various embodiments, systems and methods for wirelessly transmitting energy to a moving wireless power receiver in a network of interlinked prescribed paths. A position of a wireless power receiver in a network of interlinked prescribed paths is tracked as the wireless power receiver traverses one or more prescribed paths in the network of interlinked prescribed paths. Energy is wirelessly transmitted from one or more wireless power transmitters to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths. Specifically, the energy is wirelessly transmitted to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths as the wireless power receiver traverses the one or more prescribed paths in the network of interlinked prescribed paths.
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
H02J 50/40 - Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
H02J 50/27 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
10.
Wireless power transfer in the fresnel zone with a dynamic metasurface antenna
A metasurface antenna can be configured to focus a paraxial beam, such as a Gaussian beam, on a target within a Fresnel zone region. The focused beam can be used to wirelessly deliver power to the target.
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H02J 50/23 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
H02J 50/27 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
Systems and methods are described herein for providing wireless power to a mobile device, such as an aerial mobile device like an unmanned aerial vehicle (UAV). A navigational constraint model may prescribe a navigation path along which a wireless power transmission system can provide wireless power to the mobile device. Deviations from the prescribed path may require the mobile device to self-power. The prescription of a navigation path allows for the use of reduced-complexity wireless power transmitters that are fully capable of servicing the prescribed path. Multiple embodiments of prescribed paths with various limitations and features are set forth herein, along with multiple embodiments of wireless power transmission systems of reduced complexity and functionality to fully service the various embodiments of prescribed paths.
H02J 50/20 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
B64C 39/02 - Aircraft not otherwise provided for characterised by special use
According to various embodiments, a non-linear RF receiver including non-linear components is configured to receive RF energy. The non-linear RF receiver is coupled to an array of RF antennas having configuration parameters that vary across the array. The varied configuration parameters can be selected to reduce an amount of RF energy that is scatter, reflected, or re-radiated by the array in response to incident RF energy at the array of RF antennas. In various embodiments, the non-linear components of the non-linear RF receiver can have non-linear component configuration parameters that vary across the non-linear receiver. The varied non-linear component parameters can be selected to reduce an amount of RF energy that is re-radiated in response to incident RF energy.
H02J 50/70 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
H01Q 21/29 - Combinations of different interacting antenna units for giving a desired directional characteristic
H02J 50/20 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
H02J 50/40 - Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
H01Q 1/24 - SupportsMounting means by structural association with other equipment or articles with receiving set
H02J 50/27 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
H02J 50/23 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
According to various embodiments, a quadrature hybrid coupler included as part of a phase shifter is used to provide variable phase shift to an input signal. The quadrature hybrid coupler includes an input port, an output port, and two terminated ports. The phase shifter includes one or more static lumped elements connected to the QHC to reduce at least one electrical dimension of the QHC to substantially less than a quarter wavelength. The phase shifter also include one or more variable lumped elements connected to the QHC to provide a variable phase shift to the input signal between the input port and the output port of the QHC.
System and methods are described herein for providing wireless power to a target device, such as a laptop computer, a mobile phone, a vehicle, robot, or an unmanned aerial vehicle or system (UAV) or (UAS). A tunable multi-element transmitter may transmit electromagnetic radiation (EMR) to the target device using any of a wide variety of frequency bands. A location determination subsystem and/or range determination subsystem may determine a relative location, orientation, and/or rotation of the target device. For a target device within a distance range for which a smallest achievable waist of the Gaussian beam of the EMR at an operational frequency is smaller than the multi-element EMR receiver of the target device, a non-Gaussian beamform may be determined to increase efficiency, decrease overheating, reduce spillover, increase total power output of rectenna receivers on the target device, or achieve another target power delivery goal.
H02J 50/70 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
H02J 50/23 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
H04W 52/28 - TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non-transmission
H02J 50/27 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
H01Q 3/24 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
B64C 39/02 - Aircraft not otherwise provided for characterised by special use
H01Q 1/24 - SupportsMounting means by structural association with other equipment or articles with receiving set
H01Q 1/28 - Adaptation for use in or on aircraft, missiles, satellites, or balloons
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 5/335 - Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
The present technology pertains to a system and method of operation of a metamaterial phase shifter having various use applications. In one aspect of the present disclosure, a phase shifter includes a network of tunable impedance elements and a controller. The controller is coupled to the network of tunable impedance elements and configured to receive a phase shift input value and determine a corresponding tuning voltage to be supplied to each tunable impedance element of the network of tunable impedance elements based on the phase shift input value, the network of tunable impedance element being configured to shift a phase of an input signal based on tuning voltages supplied to the network of tunable impedance elements by the controller.
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 3/40 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elementsArrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture varying the phase by electrical means with phasing matrix
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elementsArrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
16.
Aperture efficiency enhancements using holographic and quasi-optical beam shaping lenses
A conversion device for converting between electric power and electromagnetic waves, such as an RF antenna, may be fitted with an intermediary holographic lens to modify a radiation pattern between an electromagnetic radiation (EMR) reflector to reflect EMR and an EMR feed. The holographic lens may modify a performance metric associated with the conversion device. The holographic lens may have a volumetric distribution of dielectric constants. For example, a voxel-based discretization of the distribution of dielectric constants can be used to generate the holographic lens.
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elementsArrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
H01Q 19/06 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
H01Q 15/08 - Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
H01Q 19/08 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located
H01Q 19/13 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
H01Q 19/19 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
17.
Time reversal beamforming techniques with metamaterial antennas
In one embodiment, a source device includes one or more tunable elements associated with an antenna. The source device is operable to modulate an impedance of one or more tunable elements based on a sequence of tuning vectors, measure a reference signal amplitude for each tuning vector, and determine field amplitudes for an array of reference points that circumscribe at least a portion of the source device based on the reference signal amplitude for each tuning vector. The source device is further operable to determine a target tuning vector that defines a target radiation pattern based on the field amplitudes, and transmit a target signal to a target device based on the target radiation pattern.
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 1/36 - Structural form of radiating elements, e.g. cone, spiral, umbrella
18.
Systems and methods for reduced control inputs in tunable meta-devices
In some embodiments, an antenna system includes antenna elements for transmitting and/or receiving electromagnetic radiation. The antenna elements may be connected to a feed via a plurality of tunable impedance elements. At least some of the tunable impedance elements may have nonlinear responses to impedance tuning that can be numerically approximated by nonlinear impedance-tuning parameter curves with a cumulative number of selectable nonlinear coefficients. Control inputs to nonlinearly vary impedance values of the tunable impedance elements allow for the selection of distinct impedance patterns that correspond to distinct field patterns attainable by the antenna system. The number of field patterns attainable is a function of the number of control inputs and a cumulative number of selectable nonlinear coefficients. Thus, a selection of tunable impedance elements and control inputs may be made to attain a target number of field patterns to serve a desired coverage area.
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 21/29 - Combinations of different interacting antenna units for giving a desired directional characteristic
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
A determined object wave can be approximately formed by applying a modulation pattern to metamaterial elements receiving RF energy from a feed network. For example, a desired object wave at a surface of an antenna is selected to be propagated into a far-field pattern. A computing system can compute an approximation of the object wave by calculating a modulation pattern to apply to metamaterial elements receiving RF energy from a feed network. The approximation can be due to a grid size of the metamaterial elements. Once the modulation pattern is determined, it can be applied to the metamaterial elements and the RF energy can be provided in the feed network, causing emission of the approximated object wave from the antenna.
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
In one embodiment, an antenna system performance metric for a tunable antenna system comprising tunable impedance elements is identified. The tunable impedance elements are simulated as uniquely numbered lumped ports characterizing a port network with a corresponding admittance or impedance matrix. The admittance or impedance matrix can be approximated using the periodicity of the tunable antenna system and the S-matrix of the port network can be estimated using the approximated admittance or impedance matrix. An optimal configuration of the tunable antenna system with respect to the antenna system performance metric is identified from responses of the tunable antenna system to variable impedances using the S-matrix. The optimal configuration of the tunable antenna system includes impedances of the tunable impedance elements modeled as the lumped ports in the port network.
H01Q 21/24 - Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
An antenna system includes a tunable medium, rectifier circuitry, combining circuitry, and control circuitry. The tunable medium includes antenna elements corresponding to lumped impedance elements and variable impedance control inputs configured to enable selection of an impedance value for each of the lumped impedance elements. The control circuitry is configured to determine a scattering matrix (S-matrix) relating field amplitudes at lumped ports including internal lumped ports and lumped external ports. The internal lumped ports correspond to the lumped impedance elements, and the lumped external ports correspond to at least one of the rectifier circuitry inputs, the combined output of the combining circuitry, and the at least one transmitting element. A method includes determining at least a portion of component values of a desired S-matrix, and adjusting the variable impedance control inputs to at least approximate at least a portion of the desired S-matrix.
Described embodiments include a system and method. A system includes a tracking circuit configured to determine a location of a target device within a Fresnel region of an electronically reconfigurable beam-forming antenna. The antenna is configured to implement at least two selectable focused electromagnetic beams within its Fresnel region. The system includes a beam selector circuit configured to select from the at least two selectable focused electromagnetic beams a focused electromagnetic beam having a focal spot that covers at least a portion of the determined location of the target device. The system includes a beam definition circuit configured to determine an electromagnetic field distribution over an aperture of the electronically reconfigurable beam-forming antenna implementing the selected focused electromagnetic beam. The system includes an output circuit configured to transmit a signal indicative of the determined electromagnetic field distribution.
H02J 50/23 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H04B 5/00 - Near-field transmission systems, e.g. inductive or capacitive transmission systems
23.
Antenna systems and methods for modulating an electromagnetic property of an antenna
Antenna systems and related methods are disclosed. An antenna system includes an antenna controller configured to operably couple to control inputs of an antenna including an array of electromagnetic (EM) scattering elements. A method includes controlling an array of EM scattering elements to operate according to holographic modulation patterns, and modulating at least one effective EM property of the antenna over space, time, or a combination thereof to, in the average and/or the aggregate, cause side lobes of an antenna gain of the antenna to be reduced.
H01Q 21/29 - Combinations of different interacting antenna units for giving a desired directional characteristic
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elementsArrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 3/24 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
H01Q 21/24 - Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
Described embodiments include a system and method. An antenna is configured to implement at least two selectable radiative electromagnetic field spatial distributions. Each selectable radiative electromagnetic field spatial distributions respectively has a bounding surface that describes a specified power density in the radiative electromagnetic field. A sensor circuit is configured to detect a presence of an object within the bounding surface of an implemented radiative electromagnetic field. A countermeasure circuit is configured to select a response to the detected presence of the object within the bounding surface of the implemented radiative electromagnetic field. A spatial distribution selector circuit is configured to select from the at least two selectable radiative electromagnetic field spatial distributions another radiative electromagnetic field spatial distribution (i) that includes a target device present within the bounding surface of the selected radiative electromagnetic field and (ii) that implements the selected response to the detected presence of the object.
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
H02J 50/60 - Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
Systems, methods, and apparatus are described to provide a large emittance angle and a large beamforming aperture for radiation emitted by a relatively small transmit aperture. For example, a diffractive concentrator structure can provide a large emittance angle and a large beamforming aperture for radiation emitted by a small transmit aperture and delivered to a larger exit aperture.
Surface scattering antennas with lumped elements provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the surface scattering antenna is a multi-layer printed circuit board assembly, and the lumped elements are surface-mount components placed on an upper surface of the printed circuit board assembly. In some approaches, the scattering elements are adjusted by adjusting bias voltages for the lumped elements. In some approaches, the lumped elements include diodes or transistors.
H01Q 9/00 - Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 13/20 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave
27.
Surface scattering antennas with frequency shifting for mutual coupling mitigation
Inter-element couplings between radiative elements of an antenna can be reduced by increasing resonant frequencies for first selected radiative elements and decreasing resonant frequencies for second selected radiative elements. In some approaches, the radiative elements are coupled to a waveguide and the antenna configuration is a hologram that relates a reference wave of the waveguide to a radiated wave of the antenna. In some approaches, the antenna configuration is modified by identifying stationary points of the hologram and then staggering resonant frequencies for radiative elements within neighborhoods of the stationary points.
H01Q 1/52 - Means for reducing coupling between antennas Means for reducing coupling between an antenna and another structure
H01Q 13/28 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
28.
Modulation patterns for surface scattering antennas
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 11/02 - Non-resonant antennas, e.g. travelling-wave antenna
H01Q 13/20 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave
29.
Antenna systems and related methods for selecting modulation patterns based at least in part on spatial holographic phase
Antenna systems and related methods are disclosed. An antenna system includes an antenna controller configured to operably couple to an array of electromagnetic (EM) scattering elements. The controller is configured to determine a performance parameter of the antenna system for a plurality of different combinations of different spatial holographic phases and effective mode indices having different modulation patterns corresponding thereto, and select one of the modulation patterns based on the performance parameter corresponding thereto. A method includes storing data indicating a modulation pattern determined based on a spatial holographic phase and an effective mode index for each of a plurality of different main beam angles from the antenna, and controlling the antenna to operate with a main beam pointed in each of the plurality of different main beam angles by controlling the antenna to operate in each modulation pattern corresponding to the plurality of main beam angles.
H01Q 3/34 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elementsArrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture varying the phase by electrical means
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
A surface scattering antenna with a tightly-coupled or tightly-connected array of radiators provides an adjustable antenna with broadband instantaneous bandwidth.
A determined object wave can be approximately formed by applying a modulation pattern to metamaterial elements receiving RF energy from a feed network. For example, a desired object wave at a surface of an antenna is selected to be propagated into a far-field pattern. A computing system can compute an approximation of the object wave by calculating a modulation pattern to apply to metamaterial elements receiving RF energy from a feed network. The approximation can be due to a grid size of the metamaterial elements. Once the modulation pattern is determined, it can be applied to the metamaterial elements and the RF energy can be provided in the feed network, causing emission of the approximated object wave from the antenna.
Holographic beamforming antennas may be utilized for adaptive routing within communications networks, such as wireless backhaul networks. Holographic beamforming antennas may be further utilized for discovering and/or addressing nodes in a communication network with steerable, high-directivity beams. Holographic beamforming antennas may be further utilized for extending the range of communications nodes and providing bandwidth assistance to adjacent nodes via dynamic adjacent cell assist. In some approaches, MIMO is used in concert with holographic beamforming for additional channel capacity.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
Holographic beamforming antennas may be utilized for adaptive routing within communications networks, such as wireless backhaul networks. Holographic beamforming antennas may be further utilized for discovering and/or addressing nodes in a communication network with steerable, high-directivity beams. Holographic beamforming antennas may be further utilized for extending the range of communications nodes and providing bandwidth assistance to adjacent nodes via dynamic adjacent cell assist. In some approaches, MIMO is used in concert with holographic beamforming for additional channel capacity.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
Surface scattering antennas provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the scattering elements are complementary metamaterial elements. In some approaches, the scattering elements are made adjustable by disposing an electrically adjustable material, such as a liquid crystal, in proximity to the scattering elements. Methods and systems provide control and adjustment of surface scattering antennas for various applications.
H01Q 15/10 - Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
H01Q 13/28 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 15/02 - Refracting or diffracting devices, e.g. lens, prism
H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
35.
Methods and systems for communication with beamforming antennas
Holographic beamforming antennas may be utilized for adaptive routing within communications networks, such as wireless backhaul networks. Holographic beamforming antennas may be further utilized for discovering and/or addressing nodes in a communication network with steerable, high-directivity beams. Holographic beamforming antennas may be further utilized for extending the range of communications nodes and providing bandwidth assistance to adjacent nodes via dynamic adjacent cell assist. In some approaches, MIMO is used in concert with holographic beamforming for additional channel capacity.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
Surface scattering antennas provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the scattering elements are patch elements. In some approaches, the scattering elements are made adjustable by disposing an electrically adjustable material, such as a liquid crystal, in proximity to the scattering elements. Methods and systems provide control and adjustment of surface scattering antennas for various applications.
H01Q 13/22 - Longitudinal slot in boundary wall of waveguide or transmission line
H01Q 13/28 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
H01Q 3/22 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation in accordance with variation of frequency of radiated wave
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
37.
Modulation patterns for surface scattering antennas
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 13/20 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave
H01Q 11/02 - Non-resonant antennas, e.g. travelling-wave antenna
38.
Modulation patterns for surface scattering antennas
H01Q 11/02 - Non-resonant antennas, e.g. travelling-wave antenna
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 13/20 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave
39.
Modulation patterns for surface scattering antennas
H01Q 11/02 - Non-resonant antennas, e.g. travelling-wave antenna
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 13/20 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave
40.
Modulation patterns for surface scattering antennas
H01Q 11/02 - Non-resonant antennas, e.g. travelling-wave antenna
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 13/20 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave
Surface scattering antennas with lumped elements provide adjustable radiation fields by adjustably coupling scattering elements along a waveguide. In some approaches, the scattering elements include slots in an upper surface of the waveguide, and the lumped elements are configured to span the slots provide adjustable loading. In some approaches, the scattering elements are adjusted by adjusting bias voltages for the lumped elements. In some approaches, the lumped elements include diodes or transistors.
H01Q 9/00 - Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
H01Q 23/00 - Antennas with active circuits or circuit elements integrated within them or attached to them
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 13/20 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave
H01Q 13/20 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 11/02 - Non-resonant antennas, e.g. travelling-wave antenna
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
Surface scattering antennas on curved manifolds provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure.
H01Q 11/04 - Non-resonant antennas, e.g. travelling-wave antenna with parts bent, folded, shaped, screened or electrically loaded to obtain desired phase relation of radiation from selected sections of the antenna
Surface scattering antennas with lumped elements provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the surface scattering antenna is a multi-layer printed circuit board assembly, and the lumped elements are surface-mount components placed on an upper surface of the printed circuit board assembly. In some approaches, the scattering elements are adjusted by adjusting bias voltages for the lumped elements. In some approaches, the lumped elements include diodes or transistors.
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 13/20 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave
Methods and a media system and storage system for cross-media storage coordination include but are not limited to storing a first data version of specified content based on a particular media format: storing at least a second data version of related content based on a different media format: providing a cross-reference between the first data version and the at least second data version to enable coordinated management by a designated user and/or an approved device for search and possible retrieval of the first data version and/or the at least second data version: and implementing communication access by one or more parties and/or the designated user via a communication type that is correlated with the first data version and/or the at least second data version.
G06F 17/30 - Information retrieval; Database structures therefor
H04L 29/06 - Communication control; Communication processing characterised by a protocol
G11B 27/034 - Electronic editing of digitised analogue information signals, e.g. audio or video signals on discs
H04N 21/231 - Content storage operation, e.g. caching movies for short term storage, replicating data over plural servers or prioritizing data for deletion
H04N 21/2343 - Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
H04N 21/235 - Processing of additional data, e.g. scrambling of additional data or processing content descriptors
H04N 21/2381 - Adapting the multiplex stream to a specific network, e.g. an IP [Internet Protocol] network
H04N 21/435 - Processing of additional data, e.g. decrypting of additional data or reconstructing software from modules extracted from the transport stream
H04N 21/84 - Generation or processing of descriptive data, e.g. content descriptors
H04L 29/08 - Transmission control procedure, e.g. data link level control procedure
Surface scattering antennas provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the scattering elements are complementary metamaterial elements. In some approaches, the scattering elements are made adjustable by disposing an electrically adjustable material, such as a liquid crystal, in proximity to the scattering elements. Methods and systems provide control and adjustment of surface scattering antennas for various applications.
H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
H01Q 13/28 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 15/02 - Refracting or diffracting devices, e.g. lens, prism
H01Q 15/10 - Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
48.
Bendable electronic device status information system and method
A system includes, but is not limited to: obtaining and one or more physical status sending modules configured to direct sending one or more bendable electronic device physical status related information portions to the bendable electronic device based upon the obtaining of the first information. In addition to the foregoing, other related system/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
G06F 1/16 - Constructional details or arrangements
G06F 3/0481 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
G09G 3/34 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source
Surface scattering antennas provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the scattering elements are patch elements. In some approaches, the scattering elements are made adjustable by disposing an electrically adjustable material, such as a liquid crystal, in proximity to the scattering elements. Methods and systems provide control and adjustment of surface scattering antennas for various applications.
H01Q 13/22 - Longitudinal slot in boundary wall of waveguide or transmission line
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
H01Q 3/22 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation in accordance with variation of frequency of radiated wave
H01Q 13/28 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
Surface scattering antennas provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the scattering elements are complementary metamaterial elements. In some approaches, the scattering elements are made adjustable by disposing an electrically adjustable material, such as a liquid crystal, in proximity to the scattering elements. Methods and systems provide control and adjustment of surface scattering antennas for various applications.
H01Q 13/00 - Waveguide horns or mouths Slot antennas Leaky-waveguide antennas Equivalent structures causing radiation along the transmission path of a guided wave
H01Q 1/00 - Details of, or arrangements associated with, antennas
H01Q 13/28 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
H01Q 15/02 - Refracting or diffracting devices, e.g. lens, prism
H01Q 15/10 - Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
52.
SURFACE SCATTERING ANTENNAS WITH ADJUSTABLE RADIATION FIELDS
Surface scattering antennas provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the scattering elements are complementary metamaterial elements. In some approaches, the scattering elements are made adjustable by disposing an electrically adjustable material, such as a liquid crystal, in proximity to the scattering elements. Methods and systems provide control and adjustment of surface scattering antennas for various applications.
H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support
H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
H01Q 13/28 - Non-resonant leaky-waveguide or transmission-line antennas Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
An apparatus to modify an incident free space electromagnetic wave includes a block of an artificially structured material having an adjustable spatial distribution of electromagnetic parameters (e.g., ∈, μ, η, σ, and n). A controller applies control signals to dynamically adjust the spatial distribution of electromagnetic parameters in the material to introduce a time-varying path delay d (t) in the modified electromagnetic wave relative to the incident electromagnetic wave.
G02B 26/06 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
G02B 26/08 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
G02B 1/00 - Optical elements characterised by the material of which they are madeOptical coatings for optical elements
H01Q 15/02 - Refracting or diffracting devices, e.g. lens, prism
H01Q 15/00 - Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
An apparatus to modify an incident free space electromagnetic wave includes a block of an artificially structured material having an adjustable spatial distribution of electromagnetic parameters (e.g., ε, μ, η, σ, and n). A controller applies control signals to dynamically adjust the spatial distribution of electromagnetic parameters in the material to introduce a time-varying path delay d(t) in the modified electromagnetic wave relative to the incident electromagnetic wave.
An apparatus to modify an incident free space electromagnetic wave includes a block of an artificially structured material having an adjustable spatial distribution of electromagnetic parameters (e.g., ∈, μ, η, σ, and n). A controller applies control signals to dynamically adjust the spatial distribution of electromagnetic parameters in the material to introduce a time-varying path delay d(t) in the modified electromagnetic wave relative to the incident electromagnetic wave.)
G02B 26/06 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
G02B 26/08 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
An apparatus to modify an incident free space electromagnetic wave includes a block of an artificially structured material having an adjustable spatial distribution of electromagnetic parameters (e.g., ∈, μ, η, σ, and n). A controller applies control signals to dynamically adjust the spatial distribution of electromagnetic parameters in the material to introduce a time-varying path delay d(t) in the modified electromagnetic wave relative to the incident electromagnetic wave.
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
Certain aspects relate to providing an at least one audio source to at least one user. Certain aspects relate to selectively modifying an at least one first sound source to be provided to the at least one user, wherein the at least one first sound source is combined with an at least one second sound source, and wherein the selectively modifying is performed relative to the at least one audio source based at least in part on at least some specific information of the at least one first sound source. Other aspects relate to selectively modifying the at least one first sound source to be provided to the at least one user relative to the at least one second sound source based at least in part on at least some specific information of the at least one first sound source.
Certain aspects relate to providing an at least one audio source to at least one user. Certain aspects relate to selectively modifying an at least one first sound source to be provided to the at least one user, wherein the at least one first sound source is combined with an at least one second sound source, and wherein the selectively modifying is performed relative to the at least one audio source based at least in part on at least some specific information of the at least one first sound source. Other aspects relate to selectively modifying the at least one first sound source to be provided to the at least one user relative to the at least one second sound source based at least in part on at least some specific information of the at least one first sound source.
G02B 6/12 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
A system and method to control the writing on electronic paper (e-paper). An e-paper device may incorporate authentication indicia as part of informational data written on e-paper material. The informational data is protected by a security methodology that is accessible to authorized entities. A reader device may be used to help make a verification determination of whether encrypted or encoded data has been altered. In some instances an output alert operably coupled to the reader device serves as a verification status indicator.
G02B 6/12 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
G01J 1/20 - Photometry, e.g. photographic exposure meter by comparison with reference light or electric value intensity of the measured or reference value being varied to equalise their effects at the detector, e.g. by varying incidence angle
H02J 17/00 - Systems for supplying or distributing electric power by electromagnetic waves
66.
Emitting and negatively-refractive focusing apparatus, methods, and systems
Apparatus, methods, and systems provide emitting and negatively-refractive focusing of electromagnetic energy. In some approaches the negatively-refractive focusing includes negatively-refractive focusing from an interior field region with an axial magnification substantially greater than one. In some approaches the negatively-refractive focusing includes negatively-refractive focusing with a transformation medium, where the transformation medium may include an artificially-structured material such as a metamaterial.
H01Q 3/44 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
67.
Negatively-refractive focusing and sensing apparatus, methods, and systems
Apparatus, methods, and systems provide negatively-refractive focusing and sensing of electromagnetic energy. In some approaches the negatively-refractive focusing includes providing an interior focusing region with an axial magnification substantially less than one. In some approaches the negatively-refractive focusing includes negatively-refractive focusing with a transformation medium, where the transformation medium may include an artificially-structured material such as a metamaterial.
Apparatus, methods, and systems provide electromagnetic compression. In some approaches the electromagnetic compression is achieved with metamaterials. In some approaches the electromagnetic compression defines an electromagnetic distance between first and second locations substantially greater than a physical distance between the first and second locations, and the first and second locations may be occupied by first and second structures (such as antennas) having an inter-structure coupling (such as a near-field coupling) that is a function of the electromagnetic distance. In some approaches the electromagnetic compression reduces the spatial extent of an antenna near field.
Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
G02B 1/00 - Optical elements characterised by the material of which they are madeOptical coatings for optical elements
B82Y 20/00 - Nanooptics, e.g. quantum optics or photonic crystals
G02B 1/118 - Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
G02B 1/113 - Anti-reflection coatings using inorganic layer materials only
Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
G02B 27/56 - Optics using evanescent waves, i.e. inhomogeneous waves
G02B 1/00 - Optical elements characterised by the material of which they are madeOptical coatings for optical elements
G02B 1/118 - Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
H01Q 15/02 - Refracting or diffracting devices, e.g. lens, prism
G02B 27/56 - Optics using evanescent waves, i.e. inhomogeneous waves
G02B 1/00 - Optical elements characterised by the material of which they are madeOptical coatings for optical elements
G02B 1/118 - Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
One aspect of the disclosure relates to obtaining at least some audio information, at least partially at a shared audio device. The aspect of the disclosure also relates to temporally coordinating transmitting at the shared audio device the at least some audio information and at least some temporally-associated dissimilar-media information that can be received by at least one other shared audio device such that corresponding segments of the at least some audio information can be received at the at least one other shared audio device substantially temporally corresponding to when corresponding segments of the at least some temporally-associated dissimilar-media information can be received at the at least one other shared audio device.
G06F 17/00 - Digital computing or data processing equipment or methods, specially adapted for specific functions
G06F 15/16 - Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
Apparatus, methods, and systems provide focusing, focus-adjusting, and sensing. In some approaches the focus-adjusting includes providing an extended depth of focus greater than a nominal depth of focus. In some approaches the focus-adjusting includes focus-adjusting with a transformation medium, where the transformation medium may include an artificially-structured material such as a metamaterial.
A method for one or more portions of one or more regions of an electronic paper assembly having one or more display layers includes, but is not limited to: obtaining first information regarding one or more positions of one or more portions of one or more regions of the electronic paper assembly and sending one or more application related information portions to the electronic paper assembly based upon the obtaining of the first information. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
A method for one or more portions of one or more regions of an electronic paper assembly having one or more display layers includes, but is not limited to: obtaining first information regarding one or more positions of one or more portions of one or more regions of the electronic paper assembly and sending one or more electronic paper assembly physical status related information portions to the electronic paper assembly based upon the obtaining of the first information. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
Devices and components that can interact with or modify propagation of electromagnetic waves are provided. The design, fabrication and structures of the devices exploit the properties of reactive composite materials (RCM) and reaction products thereof.
H01L 47/00 - Bulk negative resistance effect devices, e.g. Gunn-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01H 1/02 - Contacts characterised by the material thereof
84.
E-paper display control based on conformation sequence status
A method for one or more portions of one or more regions of an electronic paper assembly having one or more display layers includes, but is not limited to: obtaining information associated with one or more changes in one or more sequences of two or more conformations of one or more portions of one or more regions of the electronic paper assembly and controlling display of one or more portions of one or more display layers of the electronic paper assembly regarding display of second information in response to the information associated with the one or more changes in the one or more conformations of the one or more portions of the one or more regions of the electronic paper assembly. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
A system for one or more portions of one or more regions of an electronic paper assembly having one or more display layers includes, but is not limited to: obtaining information associated with one or more changes in one or more sequences of two or more conformations of one or more portions of one or more regions of the electronic paper assembly and controlling display of one or more portions of one or more display layers of the electronic paper assembly regarding display of second information in response to the information associated with the one or more changes in the one or more conformations of the one or more portions of the one or more regions of the electronic paper assembly. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
A method includes, but is not limited to: obtaining first information regarding one or more positions of one or more portions of one or more regions of a bendable electronic interface and sending one or more application related information portions to the bendable electronic interface based upon the obtaining of the first information. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation
87.
Bendable electronic interface external control system and method
A system includes, but is not limited to: obtaining and one or more application information sending modules configured to direct sending one or more application related information portions to the bendable electronic interface based upon the obtaining of the first information. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation
88.
E-paper display control based on conformation sequence status
A system for one or more portions of one or more regions of an electronic paper assembly having one or more display layers includes, but is not limited to: obtaining and controlling display of one or more portions of one or more display layers of the electronic paper assembly regarding display of second information in response to the information associated with the one or more sequences of two or more conformations of the one or more portions of the one or more regions of the electronic paper assembly. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
G09G 3/34 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
A system for one or more portions of one or more regions of an electronic paper assembly having one or more display layers includes, but is not limited to: one or more conformation sensor modules configured to direct obtaining information associated with one or more changes in one or more sequences of two or more conformations of one or more portions of one or more regions of the electronic paper assembly and one or more coordination modules configured to direct coordinating the one or more changes in one or more sequences of two or more conformations of one or more portions of one or more regions of the electronic paper assembly with one or more commands. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
A voice channel connection and a data channel connection are established with a structured voice interaction system. Navigation information for and provided by the structured voice interaction system is received over the data channel connection. The data channel navigation information is coordinated with navigation information provided by the structured voice interaction system over the voice channel connection.
H04H 40/00 - Arrangements specially adapted for receiving broadcast information
H04L 12/66 - Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
H04M 1/64 - Automatic arrangements for answering callsAutomatic arrangements for recording messages for absent subscribersArrangements for recording conversations
G06Q 40/00 - FinanceInsuranceTax strategiesProcessing of corporate or income taxes
G10L 21/00 - Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
98.
E-paper display control of classified content based on e-paper conformation
A method for one or more portions of one or more regions of an electronic paper assembly having one or more display layers includes, but is not limited to: obtaining and controlling display of one or more portions of one or more display layers of the electronic paper assembly regarding display of second information having one or more classifications in response to the first information associated with one or more changes in the one or more conformations of the one or more portions of the one or more regions of the electronic paper assembly. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
G09G 3/34 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source
99.
Display control of classified content based on flexible display containing electronic device conformation
A method includes, but is not limited to: obtaining first information associated with one or more conformations of one or more portions of one or more regions of a flexible display containing electronic device and controlling display of one or more portions of the flexible display containing electronic device regarding display of second information having one or more classifications in response to the first information associated with the one or more conformations of the one or more portions of the one or more regions of the flexible display containing electronic device. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
G07F 19/00 - Complete banking systemsCoded card-freed arrangements adapted for dispensing or receiving monies or the like and posting such transactions to existing accounts, e.g. automatic teller machines
100.
Display control of classified content based on flexible interface E-paper conformation
A system includes, but is not limited to one or more conformation sensor modules configured to direct acquisition of first information associated with one or more changes in one or more conformations of one or more portions of one or more regions of a flexible interface containing electronic device and one or more display control modules configured to direct control of display of one or more portions of the flexible interface containing electronic device regarding display of second information having one or more classifications in response to the first information associated with the one or more changes in the one or more conformations of the one or more portions of the one or more regions of the flexible interface containing electronic device. In addition to the foregoing, other related method/system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation