To achieve wavelength stabilization in pulsed lasers, a laser oscillator and a laser amplifier are driven with currents in a pre-lasing stage and a lasing stage. The laser oscillator is co-packaged with the laser amplifier.
One or more ultrasonic transducers are driven to direct a therapeutic ultrasound signal into tissue. The therapeutic ultrasound signal has a resonant ultrasound frequency to harmonically excite and damage abnormal tissue but not harmonically excite healthy tissue.
An anti-tumor agent is provided to a patient to increase a susceptibility of a tumor within the patient to harmonic excitation. Ultrasonic transducers of a wearable are driven to direct a therapeutic ultrasound signal into tissue of the patient. The therapeutic ultrasound signal has a resonant ultrasound frequency to harmonically excite and damage the tumor while the anti-tumor agent has increased the susceptibility of the tumor to the harmonic excitation of the therapeutic ultrasound signal.
A therapy system comprising: a wearable article including one or more ultrasonic transducers; and processing logic configured to drive the one or more ultrasonic transducers to direct a therapeutic ultrasound signal into tissue brought into contact with the ultrasonic transducers, wherein the therapeutic ultrasound signal has a resonant ultrasound frequency to harmonically excite and damage abnormal tissue but not harmonically excite healthy tissue, wherein the one or more ultrasonic transducers are configured to direct the therapeutic ultrasound signal to propagate through the abnormal tissue and the healthy tissue.
A therapy system comprising: one or more ultrasonic emitters disposed to direct a therapeutic ultrasound signal into a tissue; and processing logic configured to drive the one or more ultrasonic emitters, wherein the therapeutic ultrasound signal has a resonant ultrasound frequency to harmonically excite blood clots to liquify the blood clot to become soluble to blood flowing through the tissue.
A61B 17/22 - Implements for squeezing-off ulcers or the like on inner organs of the bodyImplements for scraping-out cavities of body organs, e.g. bonesSurgical instruments, devices or methods for invasive removal or destruction of calculus using mechanical vibrationsSurgical instruments, devices or methods for removing obstructions in blood vessels, not otherwise provided for
A61H 23/02 - Percussion or vibration massage, e.g. using supersonic vibrationSuction-vibration massageMassage with moving diaphragms with electric or magnetic drive
A wearable device includes one or more ultrasonic emitters disposed to direct a therapeutic ultrasound signal into tissue. The therapeutic ultrasound signal has a resonant ultrasound frequency to harmonically excite blood clots to liquify the blood clot to become soluble to blood flowing through the head.
A61B 17/22 - Implements for squeezing-off ulcers or the like on inner organs of the bodyImplements for scraping-out cavities of body organs, e.g. bonesSurgical instruments, devices or methods for invasive removal or destruction of calculus using mechanical vibrationsSurgical instruments, devices or methods for removing obstructions in blood vessels, not otherwise provided for
An anti-tumor agent is provided to a patient to increase a susceptibility of a tumor within the patient to harmonic excitation. Ultrasonic transducers of a wearable are driven to direct a therapeutic ultrasound signal into tissue of the patient. The therapeutic ultrasound signal has a resonant ultrasound frequency to harmonically excite and damage the tumor while the anti-tumor agent has increased the susceptibility of the tumor to the harmonic excitation of the therapeutic ultrasound signal.
A health message is received. At least one target brain region is selected in response to receiving the health message. An ultrasound modality profile based on the health message and the at least one target brain region is generated. A wearable therapeutic ultrasound device directs the ultrasound beams to the at least one target brain region in response to the health message. The ultrasound beams are driven with the ultrasound beam profile.
A health message is received. At least one target brain region is selected in response to receiving the health message. An ultrasound modality profile based on the health message and the at least one target brain region is generated. A wearable therapeutic ultrasound device directs the ultrasound beams to the at least one target brain region in response to the health message. The ultrasound beams are driven with the ultrasound beam profile.
A seed laser is configured to emit seed laser light. A plurality of optical amplifiers is configured to generate amplified laser light by amplifying the seed laser light. Each of the optical amplifiers is configured to separately direct its respective amplified laser light to a medium without being optically combined within the laser assembly with any of the other amplified laser light emitted by other optical amplifiers in the plurality of optical amplifiers.
H01S 3/30 - Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
H01S 3/10 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
H01S 5/062 - Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
H01S 3/00 - Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
Coherent light (e.g., laser light) is emitted into a cranium through an optical fiber. A tissue sample (e.g., red blood cells, blood vessels, brain tissue) within the cranium diffuses the coherent light. Different tissue sample motion quantities generate different coherent light interference patterns. An image of a coherent light interference pattern is captured with an image sensor coupled to an optical element. The speckle contrast of the image quantifies coherent light interference pattern. A waveform of sequentially captured speckle contrast values over time has characteristics that reflect intracranial blood flow health. If waveform characteristics indicate poor or questionable intracranial blood flow heath, a notification message is displayed, played, or otherwise transmitted.
G08B 7/06 - Signalling systems according to more than one of groups Personal calling systems according to more than one of groups using electric transmission
A large vessel occlusion (LVO) alert generated by a point-of-care diagnostic system is received. The LVO alert is representative of a probability of an LVO event in a patient. A mapping coordinate is received. A database of care centers proximate to the mapping coordinate is accessed. A preferred care center from the database is selected based at least on a treatment capability associated with the preferred care center and a distance of the care centers to the mapping coordinate. An LVO event notification is transmitted to initiate stroke medical care.
G16H 40/20 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
13.
LARGE VESSEL OCCLUSION ALERT FROM OPTICAL MEASUREMENTS
A first optical measurement of tissue with a first optical device is initiated. The first optical measurement includes a first shallow optical reading and a first deeper optical reading. A second optical measurement of the tissue with a second optical device spaced is initiated. The second optical device is spaced apart from the first optical device. The second optical measurement includes a second shallow optical reading and a second deeper optical reading. A first difference value between the first shallow optical reading and the first deeper optical reading is determined. A second difference value between the second shallow optical reading and the second deeper optical reading is determined. A large vessel occlusion (LVO) alert is generated when a ratio of the first difference value to the second difference value is larger than a threshold value.
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
A61B 8/00 - Diagnosis using ultrasonic, sonic or infrasonic waves
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Coherent light (e.g., laser light) is emitted into a cranium through an optical fiber. A tissue sample (e.g., red blood cells, blood vessels, brain tissue) within the cranium diffuses the coherent light. Different tissue sample motion quantities generate different coherent light interference patterns. An image of a coherent light interference pattern is captured with an image sensor coupled to an optical element. The speckle contrast of the image quantifies coherent light interference pattern. A waveform of sequentially captured speckle contrast values over time has characteristics that reflect intracranial blood flow health. If waveform characteristics indicate poor or questionable intracranial blood flow heath, a notification message is displayed, played, or otherwise transmitted.
A large vessel occlusion (LVO) alert generated by a point-of-care diagnostic system is received. The LVO alert is representative of a probability of an LVO event in a patient. A mapping coordinate is received. A database of care centers proximate to the mapping coordinate is accessed. A preferred care center from the database is selected based at least on a treatment capability associated with the preferred care center and a distance of the care centers to the mapping coordinate. An LVO event notification is transmitted to initiate stroke medical care.
A first optical measurement of tissue with a first optical device is initiated. The first optical measurement includes a first shallow optical reading and a first deeper optical reading. A second optical measurement of the tissue with a second optical device spaced is initiated. The second optical device is spaced apart from the first optical device. The second optical measurement includes a second shallow optical reading and a second deeper optical reading. A first difference value between the first shallow optical reading and the first deeper optical reading is determined. A second difference value between the second shallow optical reading and the second deeper optical reading is determined. A large vessel occlusion (LVO) alert is generated when a ratio of the first difference value to the second difference value is larger than a threshold value.
An apparatus includes a glass element, a fluid, an illumination source, and an ultrasound emitter. The glass element is immersed in the fluid. The illumination source emits light. The ultrasound emitter is configured to direct an ultrasonic signal through the fluid to the glass element. The glass element is configured to reflect the ultrasonic signal along a substantially similar path as an optical path that the light propagates along.
Laser light is emitted from a laser into a scattering layer. An ultrasound signal is emitted into a sample. A signal is generated with a light detector in response to a measurement beam of laser light exiting the light scattering layer into the light detector. At least a portion of the measurement beam formed between the laser and the light detector is wavelength-shifted by the ultrasound signal subsequent to the ultrasound signal propagating through the sample.
A first signal is generated with a first light detector in response to an ultrasound signal encountering a first measurement beam. A second signal is generated with a second light detector in response to the ultrasound signal encountering a second measurement beam. The second measurement beam propagates through the sample and the first measurement beam propagates outside the sample.
Laser light is emitted from a laser into a scattering layer. An ultrasound signal is emitted into a sample. A signal is generated with a light detector in response to a measurement beam of laser light exiting the light scattering layer into the light detector. At least a portion of the measurement beam formed between the laser and the light detector is wavelength-shifted by the ultrasound signal subsequent to the ultrasound signal propagating through the sample.
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
A61B 5/151 - Devices for taking samples of blood specially adapted for taking samples of capillary blood, e.g. by lancets
21.
Dual wavelength imaging and out of sample optical imaging
A first signal is generated with a first light detector in response to an ultrasound signal encountering a first measurement beam. A second signal is generated with a second light detector in response to the ultrasound signal encountering a second measurement beam. The second measurement beam propagates through the sample and the first measurement beam propagates outside the sample.
Coherent light (e.g., laser light) is emitted into a tissue sample through an optical fiber. The tissue sample diffuses the coherent light. Different blood flow quantities generate different coherent light interference patterns. An image of a coherent light interference pattern is captured with an image sensor coupled to an optical fiber. The speckle contrast of the image quantifies coherent light interference pattern. The speckle contrast is determined and is mapped to blood flow quantities using one or more data models. A quantity of blood flow is identified in a tissue sample at least partially based on the speckle contrast value of the captured image.
Coherent light (e.g., laser light) is emitted into a tissue sample through an optical fiber. The tissue sample diffuses the coherent light. Different blood flow quantities generate different coherent light interference patterns. An image of a coherent light interference pattern is captured with an image sensor coupled to an optical fiber. The speckle contrast of the image quantifies coherent light interference pattern. The speckle contrast is determined and is mapped to blood flow quantities using one or more data models. A quantity of blood flow is identified in a tissue sample at least partially based on the speckle contrast value of the captured image.
An ultrasound emitter launches an ultrasonic signal into a diffuse medium such as tissue. The diffuse medium is illuminated with an infrared illumination signal. activating an ultrasound emitter to launch an ultrasonic signal into a diffuse medium. An infrared reference beam is interfered with an infrared exit signal having an infrared wavelength that is the same as the infrared illumination signal. An infrared image is captured of the interference of the infrared reference beam with the infrared exit signal.
A laser device includes a seed laser, a plurality of optical amplifiers, and an optical distribution assembly. The seed laser is configured to emit seed laser light. The plurality of optical amplifiers is configured to generate amplified laser light by amplifying the seed laser light. The optical distribution assembly is configured to distribute the seed laser light to an input of each of the optical amplifiers in the plurality and each of the optical amplifiers is configured to direct its respective amplified laser light to a common target.
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
H01S 3/30 - Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
H01S 3/10 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
H01S 5/062 - Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
A laser device includes a seed laser, a plurality of optical amplifiers, and an optical distribution assembly. The seed laser is configured to emit seed laser light. The plurality of optical amplifiers is configured to generate amplified laser light by amplifying the seed laser light. The optical distribution assembly is configured to distribute the seed laser light to an input of each of the optical amplifiers in the plurality and each of the optical amplifiers is configured to direct its respective amplified laser light to a common target.
H01S 3/10 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
A61B 8/00 - Diagnosis using ultrasonic, sonic or infrasonic waves
An enclosure permits ingress of an infrared light beam and ultrasonic signal entering the enclosure from two different locations and facilitates their exit from the enclosure along a substantially similar egress path. The enclosure contains fluid which propagates the ultrasonic wave and a glass element which reflects the ultrasonic wave from its ingress direction onto an egress path. The fluid is an index matching fluid having a refractive index the same as the refractive index of the glass element, rendering the glass element transparent to the infrared light beam. Thus, the infrared light beam, having been induced into the enclosure on an entry path directed through the glass element, passes through the glass element without being reflected or refracted by it, placing the infrared light beam on a substantially similar path to that of the ultrasonic wave for egress of both waves from the enclosure at substantially the same point.
An image pixel array captures and infrared image of an interference between an imaging signal and a reference wavefront. A display pixel array generates an infrared holographic imaging signal and the image pixel array receives the infrared imaging signal through the display pixel array.
An infrared imaging signal is generated to illuminate tissue. An infrared image of an exit signal of the infrared imaging signal is captured. The infrared imaging signal is within a frequency band.
A first wavelength-shifted exit signal is interfered with a first reference beam and a second wavelength-shifted exit signal is interfered with a second reference beam. The first wavelength-shifted exit signal and the second wavelength-shifted exit signal have different wavelengths. A first and second interference pattern are captured by an image sensor in a single image capture. The first reference beam is incident on the image sensor at a first reference angle and the second reference beam is incident on the image sensor at a second reference angle different from the first reference angle.
G01N 33/49 - Physical analysis of biological material of liquid biological material blood
G01N 21/3577 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
G01N 21/45 - RefractivityPhase-affecting properties, e.g. optical path length using interferometric methodsRefractivityPhase-affecting properties, e.g. optical path length using Schlieren methods
A light pulse is emitted from a light source for illuminating a medium. Energy level data of the light pulse is measured before the light pulse enters the medium. An image sensor captures an image that includes an interference pattern generated by an exit signal of the light pulse exiting the medium interfering with a reference wavefront. Normalized intensity data is generated by normalizing intensity data exit signal data by the energy level data.
A61B 6/00 - Apparatus or devices for radiation diagnosisApparatus or devices for radiation diagnosis combined with radiation therapy equipment
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
G01T 1/161 - Applications in the field of nuclear medicine, e.g. in vivo counting
H03C 3/40 - Angle modulation by converting amplitude modulation to angle modulation using two signal paths the outputs of which have a predetermined phase difference and at least one output being amplitude-modulated
A device includes a sensor, a coherent infrared illumination source and optics to direct an infrared reference beam to the sensor. The sensor is positioned to capture an image of an interference signal generated by an interference of the infrared reference beam and a wavelength-shifted exit signal. The wavelength-shifted exit signal propagates through the optics before interfering with the infrared reference beam.
G03H 1/00 - Holographic processes or apparatus using light, infrared, or ultraviolet waves for obtaining holograms or for obtaining an image from themDetails peculiar thereto
G03H 1/04 - Processes or apparatus for producing holograms
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
A61B 8/00 - Diagnosis using ultrasonic, sonic or infrasonic waves
A system or device includes a member structure, a plurality of flexible members, and a plurality of tips disposed at ends of the flexible members. The member structure includes an ultrasonic emitter configured to emit an ultrasonic imaging signal. The plurality of flexible members are coupled to the member structure. The plurality of tips are disposed at ends of the flexible members. At least one tip of the plurality of tips includes an image sensor configured to receive an infrared exit signal.
An imaging system includes an infrared illuminator, an ultrasonic emitter, a reference wavefront generator, and an image pixel array. The infrared illuminator emits a general illumination emission into a three-dimensional diffuse medium, where a portion of the general illumination emission encounters a voxel within the diffuse medium. The ultrasonic emitter focuses an ultrasonic signal to the voxel to wavelength-shift the portion of the general illumination emission to generate a shifted infrared imaging signal. The reference wavefront generator generates an infrared reference wavefront having a same wavelength as the shifted infrared imaging signal. The image pixel array captures an infrared image of an interference between the shifted infrared imaging signal and the infrared reference wavefront.
A refractive component includes at least one reflection surface and at least one diffractive optical element. The refractive component is configured to receive a light beam and the light beam expands within the refractive component and is reflected by the at least one reflection surface. The diffractive optical element is configured to receive the light beam reflected from the at least one reflection surface, collimate the light beam, and redirect the light beam out of the refractive component.
An infrared image is captured while an infrared reference wavefront and an infrared imaging signal are incident on an image pixel array. A frequency domain infrared image is generated by performing a transform operation on the infrared image. A filtered frequency domain infrared image is generated by applying a mask to the frequency domain infrared image to isolate a frequency representing the interference between the infrared reference beam and the incoming infrared image signal. Intensity data is generated from the filtered frequency domain infrared image. The intensity data is incorporated as a voxel value in a composite image.
H04N 5/374 - Addressed sensors, e.g. MOS or CMOS sensors
G03H 1/04 - Processes or apparatus for producing holograms
G03H 1/16 - Processes or apparatus for producing holograms using Fourier transform
G03H 1/30 - Processes or apparatus specially adapted to produce multiple holograms or to obtain images from them, e.g. multicolour technique discrete holograms only
An imaging device includes an image pixel array and a display pixel array. The image pixel array is configured to capture an infrared image of an interference between an infrared imaging signal and an infrared reference wavefront. The display pixel array is configured to generate an infrared holographic imaging signal according to a holographic pattern driven onto the display pixels. The holographic pattern is derived from the infrared image captured by the image pixel array.
An infrared image is captured while an infrared reference wavefront and an infrared imaging signal are incident on an image pixel array. A frequency domain infrared image is generated by performing a transform operation on the infrared image. A filtered frequency domain infrared image is generated by applying a mask to the frequency domain infrared image to isolate a frequency representing the interference between the infrared reference beam and the incoming infrared image signal. Intensity data is generated from the filtered frequency domain infrared image. The intensity data is incorporated as a voxel value in a composite image.
An infrared image is captured by an image sensor and a frequency domain infrared image is generated by performing a Fourier transform operation on the infrared image. A filtered frequency domain infrared image is generated by applying a mask to the frequency domain infrared image. A spatial domain infrared image is generated by performing an inverse Fourier transform on the filtered frequency domain infrared image. Phase data is extracted from the spatial domain infrared image and a holographic pattern generated from the phase data is driven onto a display.
An imaging device includes an image pixel array and a display pixel array. The image pixel array is configured to capture an infrared image of an interference between an infrared imaging signal and an infrared reference wavefront. The display pixel array is configured to generate an infrared holographic imaging signal according to a holographic pattern driven onto the display pixels. The holographic pattern is derived from the infrared image captured by the image pixel array.
An infrared image is captured by an image sensor and a frequency domain infrared image is generated by performing a Fourier transform operation on the infrared image. A filtered frequency domain infrared image is generated by applying a mask to the frequency domain infrared image. A spatial domain infrared image is generated by performing an inverse Fourier transform on the filtered frequency domain infrared image. Phase data is extracted from the spatial domain infrared image and a holographic pattem generated from the phase data is driven onto a display.
A co-located imaging and display pixel includes an image pixel having a photosensitive element and a display pixel co-located with the image pixel. An optical transformation engine is coupled between the image pixel and the display pixel. The optical transformation engine is configured to modulate an amplitude of display light emitted by the display pixel in response to receiving an imaging signal generated by the photosensitive element of the image pixel.
G03H 1/22 - Processes or apparatus for obtaining an optical image from holograms
G03H 1/00 - Holographic processes or apparatus using light, infrared, or ultraviolet waves for obtaining holograms or for obtaining an image from themDetails peculiar thereto
G09G 3/20 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
A display pixel array (113) is illuminated by infrared light (107) in a frequency band. An infrared holographic imaging signal (123, 223, 293) is generated by driving a holographic pattern onto the display pixel array (113). An image of an exit signal (143, 243, 273) of the holographic infrared imaging signal (123, 223, 293) is captured with an image pixel array (170). The image pixel array (170) is configured to capture the infrared light and reject light outside the frequency band.
An infrared imaging signal is generated. An image of an exit signal of the infrared imaging signal is captured. The infrared imaging signal is within a frequency band.
A display pixel array is illuminated by infrared light in a frequency band. An infrared holographic imaging signal is generated by driving a holographic pattern onto the display pixel array. An image of an exit signal of the holographic infrared imaging signal is captured with an image pixel array. The image pixel array is configured to capture the infrared light and reject light outside the frequency band.