Compositions, testing chambers and methods for testing a fuel sample for microbial contamination (including fuels treated with a biocide) are provided, which comprise: a quantity of hydrocarbon fuel; a microbial contamination wherein the microbial contamination further comprises nucleic acid in the form of both DNA, RNA or a combination thereof, and an analyzing solution; wherein the analyzing solution comprises at least six (6) primer pairs for amplification of at least one target locus, wherein at least one primer of each pair of primers is labeled with a fluorescent dye and wherein at least one of the primer pair binds to the nucleic acid of the microbial contamination.
C12Q 1/6888 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
C12Q 1/6848 - Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
Compositions, testing chambers and methods for testing a fuel sample for microbial contamination (including fuels treated with a biocide) are provided, which comprise: a quantity of hydrocarbon fuel; a microbial contamination wherein the microbial contamination further comprises nucleic acid in the form of both DNA, RNA or a combination thereof, and an analyzing solution; wherein the analyzing solution comprises at least six (6) primer pairs for amplification of at least one target locus, wherein at least one primer of each pair of primers is labeled with a fluorescent dye and wherein at least one of the primer pair binds to the nucleic acid of the microbial contamination.
C12Q 1/6888 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
C12Q 1/6848 - Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
Described herein is an adaptive expert system comprising a computing device having a memory that stores programmatic instructions and a processor that executes the programmatic instructions. The adaptive expert system receives sample data comprising at least one of raw data, optical data, and electropherogram data from a DNA analysis device, said data generated from a sample containing DNA. The adaptive expert system determines at least one characteristic of the sample data. The adaptive expert system utilizes the at least one characteristic to classify the sample data and apply a predefined parameter set to the said sample data to generate an output.
G16B 15/00 - ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
G16B 20/00 - ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
G16B 20/20 - Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
4.
Unitary Biochip Providing Sample-in to Results-Out Processing and Methods of Manufacture
A biochip for the integration of all steps in a complex process from the insertion of a sample to the generation of a result, performed without operator intervention includes microfluidic and macrofluidic features that are acted on by instrument subsystems in a series of scripted processing steps. Methods for fabricating these complex biochips of high feature density by injection molding are also provided.
B01L 7/00 - Heating or cooling apparatusHeat insulating devices
B01D 69/02 - Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or propertiesManufacturing processes specially adapted therefor characterised by their properties
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01N 27/26 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variablesInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by using electrolysis or electrophoresis
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
Described herein are methods and devices for nucleic acid quantification and, in particular, to microfluidic methods and devices for nucleic acid quantification. In certain embodiments methods of quantifying a target nucleic acid without the need for amplification are provided. The methods involve, in some embodiments, allowing a binding agent to become immobilized with respect to the target nucleic acid. In some cases, the binding agent comprises a signaling moiety that can be used to quantify the amount of target nucleic acid. In another aspect, the quantification can be carried out rapidly. For example, in certain embodiments, the quantification can be completed within 5 minutes. In yet another aspect, samples containing a low amount of target nucleic acid can be quantified. For instance, in some cases, samples containing less than 100 nanograms per microliter may be quantified. Also described are devices and kits for performing such methods, or the like.
Compositions, testing chambers and methods for testing a fuel sample for microbial contamination (including fuels treated with a biocide) are provided, which comprise: a quantity of hydrocarbon fuel; a microbial contamination wherein the microbial contamination further comprises nucleic acid in the form of both DNA, RNA or a combination thereof, and an analyzing solution; wherein the analyzing solution comprises at least six (6) primer pairs for amplification of at least one target locus, wherein at least one primer of each pair of primers is labeled with a fluorescent dye and wherein at least one of the primer pair binds to the nucleic acid of the microbial contamination.
C12Q 1/6888 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
C12Q 1/6848 - Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
Disclosed are processes and kits for rapid nucleic acid extraction from a nucleic acid-containing material, such as a bone, tooth or semen sample. For bone and tooth process involves providing the nucleic acid-containing material in a form suitable for nucleic acid extraction, adding a lysis buffer to the nucleic acid-containing material to obtain a mixture, mixing the mixture in a manner equivalent for about 30 seconds or longer and separating the mixture by centrifugation to obtain a liquid supernatant. The liquid supernatant contains the extracted nucleic acids which can be used for analysis including STR profiling by conventional or rapid DNA analysis. For semen the processes and kits involve applying an appropriate amount of sperm disruptive agent.
Described herein are instruments for excitation and detection of fluorophores in a plurality of functional regions in a biochip, using an excitation source and a steering element that directs a beam from the excitation source to a plurality of functional regions in the biochip, wherein the excitation source excites the fluorophores in the plurality of functional regions generating a signal that is detected such that said signal from at least one of the plurality of functional regions allows for nucleic acid quantification. Also described are systems for quantification and separation and detection using optical devices adapted for preliminary, simultaneous or sequential quantitation of nucleic acid in separate detection positions, and for the excitation and detection of multiple samples to steer both the excitation and detection beam paths to separately image each lane of a biochip.
Compositions, testing chambers and methods for testing a fuel sample for microbial contamination (including fuels treated with a biocide) are provided, which comprise: a quantity of hydrocarbon fuel; a microbial contamination wherein the microbial contamination further comprises nucleic acid in the form of both DNA, RNA or a combination thereof, and an analyzing solution; wherein the analyzing solution comprises at least six (6) primer pairs for amplification of at least one target locus, wherein at least one primer of each pair of primers is labeled with a fluorescent dye and wherein at least one of the primer pair binds to the nucleic acid of the microbial contamination.
C12Q 1/689 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
Described herein is an adaptive expert system comprising a computing device having a memory that stores programmatic instructions and a processor that executes the programmatic instructions. The adaptive expert system receives sample data comprising at least one of raw data, optical data, and electropherogram data from a DNA analysis device, said data generated from a sample containing DNA. The adaptive expert system determines at least one characteristic of the sample data. The adaptive expert system utilizes the at least one characteristic to classify the sample data and apply a predefined parameter set to the said sample data to generate an output.
G16B 15/00 - ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
G16B 20/00 - ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
G16B 20/20 - Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
Described herein is an adaptive expert system comprising a computing device having a memory that stores programmatic instructions and a processor that executes the programmatic instructions. The adaptive expert system receives sample data comprising at least one of raw data, optical data, and electropherogram data from a DNA analysis device, said data generated from a sample containing DNA. The adaptive expert system determines at least one characteristic of the sample data. The adaptive expert system utilizes the at least one characteristic to classify the sample data and apply a predefined parameter set to the said sample data to generate an output.
G16B 20/00 - ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
G16B 40/00 - ICT specially adapted for biostatisticsICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Electrophoresis instruments and apparatus not for medical
purposes, namely, for crime scene investigations and for
portable on-site investigations of DNA; biochips for
research and scientific purposes, namely, for use in genetic
analysis and for crime scene, forensic, veterinary, food,
agricultural and environmental investigations and for
portable and on-site investigations of nucleic acids and
proteins; medical laboratory research instruments and
devices for collecting and processing samples and evaluating
nucleic acids, proteins and other biological materials,
including by sequencing and sizing DNA; computer software
and hardware for analyzing and managing biological,
scientific, medical, environmental, veterinary, food,
agricultural and forensic data, and for communicating said
data and results. Technical support services, namely, on-site, service desk or
help desk services for instrument systems including biochips
for crime scene, forensic, veterinary, food, agricultural
and environmental investigations and for portable and
on-site sampling and investigations of nucleic acids and
proteins; computer software maintenance services; product
and electronic system design and development in the field of
biochips and related instrument systems for processing and
analyzing samples on biochips.
01 - Chemical and biological materials for industrial, scientific and agricultural use
03 - Cosmetics and toiletries; cleaning, bleaching, polishing and abrasive preparations
05 - Pharmaceutical, veterinary and sanitary products
09 - Scientific and electric apparatus and instruments
35 - Advertising and business services
42 - Scientific, technological and industrial services, research and design
Goods & Services
(1) Electrophoresis instruments for nucleic acid and protein separation and/or sizing, for use in crime scene investigations and for portable on-site investigations of nucleic acids and proteins; diagnostic preparations and reagents, namely, for use in biochips for use in genetic analysis and for crime scene, forensic, veterinary, food, agriculture and environmental investigations and for portable and on-site investigations of nucleic acids and proteins; devices for collecting and processing samples containing nucleic acids, namely swabs; computer software and hardware for analyzing, managing and reporting biological, scientific, medical, environmental, veterinary, food, agricultural and forensic information received from samples processed by the electrophoresis instruments for nucleic acid and protein separation and sizing for use in crime scene investigations and for portable on-site investigations of DNA and proteins (1) Retail and wholesale of electrophoresis instruments and biochips and related parts and fittings for crime scene, forensic, veterinary, food, agricultural and environmental investigations and for portable and on-site sampling and investigations of nucleic acids and proteins
(2) Technical support services in the nature of repair and maintenance of Electrophoresis instruments for nucleic acid and proteins for use in crime scene investigations and for portable on-site investigations of nucleic acids and proteins; computer software maintenance services; computer systems design and development in the field of biochips and related instrument systems for processing and analyzing samples on biochips
14.
Plastic microfluidic separation and detection platforms
Plastic electrophoresis separation chips are provided comprising a plurality of microfluidic channels and a detection window, where the detection window comprises a thin plastic; and the detection window comprises a detection region of each microfluidic channel. Such chips can be bonded to a support provided an aperture is provided in the support to allow detection of samples in the electrophoresis chip at the thin plastic detection window. Further, methods for electrophoretically separating and detecting a plurality of samples on the plastic electrophoresis separation chip are described.
Disclosed are processes and kits for rapid nucleic acid extraction from a nucleic acid-containing material, such as a bone, tooth or semen sample. For bone and tooth process involves providing the nucleic acid-containing material in a form suitable for nucleic acid extraction, adding a lysis buffer to the nucleic acid-containing material to obtain a mixture, mixing the mixture in a manner equivalent for about 30 seconds or longer and separating the mixture by centrifugation to obtain a liquid supernatant. The liquid supernatant contains the extracted nucleic acids which can be used for analysis including STR profiling by conventional or rapid DNA analysis. For semen the processes and kits involve applying an appropriate amount of sperm disruptive agent.
Disclosed are processes and kits for rapid nucleic acid extraction from a nucleic acid-containing material, such as a bone, tooth or semen sample. For bone and tooth process involves providing the nucleic acid-containing material in a form suitable for nucleic acid extraction, adding a lysis buffer to the nucleic acid-containing material to obtain a mixture, mixing the mixture in a manner equivalent for about 30 seconds or longer and separating the mixture by centrifugation to obtain a liquid supernatant. The liquid supernatant contains the extracted nucleic acids which can be used for analysis including STR profiling by conventional or rapid DNA analysis. For semen the processes and kits involve applying an appropriate amount of sperm disruptive agent.
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Electrophoresis instruments and apparatus not for medical purposes, namely, for crime scene investigations and for portable on-site investigations of DNA; biochips for research and scientific purposes, namely, for use in genetic analysis and for crime scene, forensic, veterinary, food, agricultural and environmental investigations and for portable and on-site investigations of nucleic acids and proteins; medical laboratory research instruments and devices for collecting and processing samples and evaluating nucleic acids, proteins and other biological materials, including by sequencing and sizing DNA; computer software and hardware for analyzing and managing biological, scientific, medical, environmental, veterinary, food, agricultural and forensic data, and for communicating said data and results Technical support services, namely, on-site, service desk or help desk services for instrument systems including biochips for crime scene, forensic, veterinary, food, agricultural and environmental investigations and for portable and on-site sampling and investigations of nucleic acids and proteins; computer software maintenance services; product and electronic system design and development in the field of biochips and related instrument systems for processing and analyzing samples on biochips
The present disclosure provides fully integrated microfluidic systems to perform nucleic acid analysis. These processes include sample collection, nucleic acid extraction and purification, amplification, sequencing, and separation and detection. The present disclosure also provides optical detection systems and methods for separation and detection of biological molecules. In particular, the various aspects of the invention enable the simultaneous separation and detection of a plurality of biological molecules, typically fluorescent dye-labeled nucleic acids, within one or a plurality of microfluidic chambers or channels. The nucleic acids can be labeled with at least 6 dyes, each having a unique peak emission wavelength. The present systems and methods are particularly useful for DNA fragment sizing applications such as human identification by genetic fingerprinting and DNA sequencing applications such as clinical diagnostics.
Provided are methods for multiplex polymerase chain reaction (PCR) amplification of short tandem repeat (STR) loci that can be used to rapidly generate a highly specific STR profile from target nucleic acids. The resulting STR profiles are useful for human identification purposes in law enforcement, homeland security, military, intelligence, and paternity testing applications.
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
C12Q 1/6876 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Electrophoresis instruments and apparatus for crime scene investigations and for portable on-site investigations of DNA; biochips for research and scientific purposes, namely, for use in genetic analysis and for crime scene investigations and portable on-site investigations of DNA, microfluidic devices for processing samples for use with electrophoresis instruments; computer software and hardware for analyzing and managing biological, scientific, medical, environmental, veterinary, food, agricultural and forensic data Technical support services, namely, troubleshooting in the nature of diagnosing biochips and related instrument systems for crime scene investigations of DNA; biological, bacteriological and chemical research services for investigations of DNA; technical research and studies for human identification and other forensic DNA analysis; DNA data analysis and data conversion services for scientific research purposes; computer software monitoring of computer systems by remote access to ensure proper functioning and maintenance of computer software services; product and computer system design and development in the field of biochips and related instrument systems for processing and analyzing samples on biochips
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Electrophoresis instruments and apparatus for crime scene investigations and for portable on-site investigations of DNA; biochips for research and scientific purposes, namely, for use in genetic analysis and for crime scene investigations and portable on-site investigations of DNA, microfluidic devices for processing samples for use with electrophoresis instruments; computer software and hardware for analyzing and managing biological, scientific, medical, environmental, veterinary, food, agricultural and forensic data Technical support services for biochips and related instrument systems for crime scene investigations and for portable on-site investigations of DNA; computer software maintenance services; product design and development and computer system design in the field of biochips and related instrument systems for processing and analyzing samples on biochips
22.
Unitary biochip providing sample-in to results-out processing and methods of manufacture
A biochip for the integration of all steps in a complex process from the insertion of a sample to the generation of a result, performed without operator intervention includes microfluidic and macrofluidic features that are acted on by instrument subsystems in a series of scripted processing steps. Methods for fabricating these complex biochips of high feature density by injection molding are also provided.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
B01L 7/00 - Heating or cooling apparatusHeat insulating devices
B01D 69/02 - Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or propertiesManufacturing processes specially adapted therefor characterised by their properties
G01N 27/26 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variablesInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by using electrolysis or electrophoresis
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
A biochip for the integration of all steps in a complex process from the insertion of a sample to the generation of a result, performed without operator intervention includes microfluidic and macrofluidic features that are acted on by instrument subsystems in a series of scripted processing steps. Methods for fabricating these complex biochips of high feature density by injection molding are also provided.
B01L 7/00 - Heating or cooling apparatusHeat insulating devices
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
B01D 69/02 - Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or propertiesManufacturing processes specially adapted therefor characterised by their properties
G01N 27/26 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variablesInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by using electrolysis or electrophoresis
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
Described herein are methods and devices for nucleic acid quantification and, in particular, to microfluidic methods and devices for nucleic acid quantification. In certain embodiments methods of quantifying a target nucleic acid without the need for amplification are provided. The methods involve, in some embodiments, allowing a binding agent to become immobilized with respect to the target nucleic acid. In some cases, the binding agent comprises a signaling moiety that can be used to quantify the amount of target nucleic acid. In another aspect, the quantification can be carried out rapidly. For example, in certain embodiments, the quantification can be completed within 5 minutes. In yet another aspect, samples containing a low amount of target nucleic acid can be quantified. For instance, in some cases, samples containing less than 100 nanograms per microliter may be quantified. Also described are devices and kits for performing such methods, or the like.
A self-contained apparatus for isolating nucleic acid, cell lysates and cell suspensions from unprocessed samples apparatus, to be used with an instrument, includes at least one input, and: (i) a macrofluidic component, including a chamber for receiving an unprocessed sample from a collection device and at least one filled liquid purification reagent storage reservoir; and (ii) a microfluidic component in communication with the macrofluidic component through at least one microfluidic element, the microfluidic component further comprising at least one nucleic acid purification matrix; and (iii) at least one interface port to a drive mechanism on the instrument for driving said liquid purification reagent, through the microfluidic element and the nucleic acid purification matrix, wherein the only inputs to the apparatus are through the chamber and the interface port to the drive mechanism.
The present disclosure provides fully integrated microfluidic systems to perform nucleic acid analysis. These processes include sample collection, nucleic acid extraction and purification, amplification, sequencing, and separation and detection. The present disclosure also provides optical detection systems and methods for separation and detection of biological molecules. In particular, the various aspects of the invention enable the simultaneous separation and detection of a plurality of biological molecules, typically fluorescent dye-labeled nucleic acids, within one or a plurality of microfluidic chambers or channels. The nucleic acids can be labeled with at least 6 dyes, each having a unique peak emission wavelength. The present systems and methods are particularly useful for DNA fragment sizing applications such as human identification by genetic fingerprinting and DNA sequencing applications such as clinical diagnostics.
A biochip for the integration of all steps in a complex process from the insertion of a sample to the generation of a result, performed without operator intervention includes microfluidic and macrofluidic features that are acted on by instrument subsystems in a series of scripted processing steps. Methods for fabricating these complex biochips of high feature density by injection molding are also provided.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
B01L 7/00 - Heating or cooling apparatusHeat insulating devices
B01D 69/02 - Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or propertiesManufacturing processes specially adapted therefor characterised by their properties
G01N 27/26 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variablesInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by using electrolysis or electrophoresis
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
Plastic electrophoresis separation chips are provided comprising a plurality of microfluidic channels and a detection window, where the detection window comprises a thin plastic; and the detection window comprises a detection region of each microfluidic channel. Such chips can be bonded to a support provided an aperture is provided in the support to allow detection of samples in the electrophoresis chip at the thin plastic detection window. Further, methods for electrophoretically separating and detecting a plurality of samples on the plastic electrophoresis separation chip are described.
A biochip for the integration of all steps in a complex process from the insertion of a sample to the generation of a result, performed without operator intervention includes microfluidic and macrofluidic features that are acted on by instrument subsystems in a series of scripted processing steps. Methods for fabricating these complex biochips of high feature density by injection molding are also provided.
G01N 27/26 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variablesInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by using electrolysis or electrophoresis
C12Q 1/68 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving nucleic acids
G01N 1/10 - Devices for withdrawing samples in the liquid or fluent state
B01D 69/02 - Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or propertiesManufacturing processes specially adapted therefor characterised by their properties
32.
Methods and compositions for rapid multiplex amplification of STR loci
Provided are methods for multiplex polymerase chain reaction (PCR) amplification of short tandem repeat (STR) loci that can be used to rapidly generate a highly specific STR profile from target nucleic acids. The resulting STR profiles are useful for human identification purposes in law enforcement, homeland security, military, intelligence, and paternity testing applications.
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
33.
Integrated systems for the multiplexed amplification and detection of six and greater dye labeled fragments
The present disclosure provides fully integrated microfluidic systems to perform nucleic acid analysis. These processes include sample collection, nucleic acid extraction and purification, amplification, sequencing, and separation and detection. The present disclosure also provides optical detection systems and methods for separation and detection of biological molecules. In particular, the various aspects of the invention enable the simultaneous separation and detection of a plurality of biological molecules, typically fluorescent dye-labeled nucleic acids, within one or a plurality of microfluidic chambers or channels. The nucleic acids can be labeled with at least 6 dyes, each having a unique peak emission wavelength. The present systems and methods are particularly useful for DNA fragment sizing applications such as human identification by genetic fingerprinting and DNA sequencing applications such as clinical diagnostics.
Plastic electrophoresis separation chips are provided comprising a plurality of microfluidic channels and a detection window, where the detection window comprises a thin plastic; and the detection window comprises a detection region of each microfluidic channel. Such chips can be bonded to a support provided an aperture is provided in the support to allow detection of samples in the electrophoresis chip at the thin plastic detection window. Further, methods for electrophoretically separating and detecting a plurality of samples on the plastic electrophoresis separation chip are described.
Provided are methods for multiplex polymerase chain reaction (PCR) amplification of short tandem repeat (STR) loci that can be used to rapidly generate a highly specific STR profile from target nucleic acids. The resulting STR profiles are useful for human identification purposes in law enforcement, homeland security, military, intelligence, and paternity testing applications.
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
36.
Unitary biochip providing sample-in to results-out processing and methods of manufacture
A biochip for the integration of all steps in a complex process from the insertion of a sample to the generation of a result, performed without operator intervention includes microfluidic and macrofluidic features that are acted on by instrument subsystems in a series of scripted processing steps. Methods for fabricating these complex biochips of high feature density by injection molding are also provided.
A fast, multiplexed PCR system is described that can rapidly generate amplified nucleic acid products, for example, a full STR profile, from a target nucleic acid. Such systems include, for example, microfluidic biochips and a custom built thermal cycler, which are also described. The resulting STR profiles can satisfy forensic guidelines for signal strength, inter-loci peak height balance, heterozygous peak height ratio, incomplete non-template nucleotide addition, and stutter.
A biochip for the integration of all steps in a complex process from the insertion of a sample to the generation of a result, performed without operator intervention includes microfluidic and macrofluidic features that are acted on by instrument subsystems in a series of scripted processing steps. Methods for fabricating these complex biochips of high feature density by injection molding are also provided.
A self-contained apparatus for isolating nucleic acid, cell lysates and cell suspensions from unprocessed samples apparatus, to be used with an instrument, includes at least one input, and: (i) a macrofluidic component, including a chamber for receiving an unprocessed sample from a collection device and at least one filled liquid purification reagent storage reservoir; and (ii) a microfluidic component in communication with the macrofluidic component through at least one microfluidic element, the microfluidic component further comprising at least one nucleic acid purification matrix; and (iii) at least one interface port to a drive mechanism on the instrument for driving said liquid purification reagent, through the microfluidic element and the nucleic acid purification matrix, wherein the only inputs to the apparatus are through the chamber and the interface port to the drive mechanism.
Described herein are methods and devices for nucleic acid quantification and, in particular, to microfluidic methods and devices for nucleic acid quantification. In certain embodiments methods of quantifying a target nucleic acid without the need for amplification are provided. The methods involve, in some embodiments, allowing a binding agent to become immobilized with respect to the target nucleic acid. In some cases, the binding agent comprises a signaling moiety that can be used to quantify the amount of target nucleic acid. In another aspect, the quantification can be carried out rapidly. For example, in certain embodiments, the quantification can be completed within 5 minutes. In yet another aspect, samples containing a low amount of target nucleic acid can be quantified. For instance, in some cases, samples containing less than 100 nanograms per microliter may be quantified. Also described are devices and kits for performing such methods, or the like.
A self-contained apparatus for isolating nucleic acid, cell lysates and cell suspensions from unprocessed samples apparatus, to be used with an instrument, includes at least one input, and: (i) a macrofluidic component, including a chamber for receiving an unprocessed sample from a collection device and at least one filled liquid purification reagent storage reservoir; and (ii) a microfluidic component in communication with the macrofluidic component through at least one microfluidic element, the microfluidic component further comprising at least one nucleic acid purification matrix; and (iii) at least one interface port to a drive mechanism on the instrument for driving said liquid purification reagent, through the microfluidic element and the nucleic acid purification matrix, wherein the only inputs to the apparatus are through the chamber and the interface port to the drive mechanism.
The invention provides methods and systems for ruggedizing a nucleic acid analyzing apparatus. The ruggedized apparatus can be used reliably and effectively in uncontrolled environments, such as, for example at a crime scene to collect and analyze forensic data, as well as in semi-controlled environments, such as, for example at a point of care location.
The present disclosure provides fully integrated microfluidic systems to perform nucleic acid analysis. These processes include sample collection, nucleic acid extraction and purification, amplification, sequencing, and separation and detection. The present disclosure also provides optical detection systems and methods for separation and detection of biological molecules. In particular, the various aspects of the invention enable the simultaneous separation and detection of a plurality of biological molecules, typically fluorescent dye-labeled nucleic acids, within one or a plurality of microfluidic chambers or channels. The nucleic acids can be labeled with at least 6 dyes, each having a unique peak emission wavelength. The present systems and methods are particularly useful for DNA fragment sizing applications such as human identification by genetic fingerprinting and DNA sequencing applications such as clinical diagnostics.
Plastic electrophoresis separation chips are provided comprising a plurality of microfluidic channels and a detection window, where the detection window comprises a thin plastic; and the detection window comprises a detection region of each microfluidic channel. Such chips can be bonded to a support provided an aperture is provided in the support to allow detection of samples in the electrophoresis chip at the thin plastic detection window. Further, methods for electrophoretically separating and detecting a plurality of samples on the plastic electrophoresis separation chip are described.
A fast, multiplexed PCR system is described that can rapidly generate amplified nucleic acid products, for example, a full STR profile, from a target nucleic acid. Such systems include, for example, microfluidic biochips and a custom built thermal cycler, which are also described. The resulting STR profiles can satisfy forensic guidelines for signal strength, inter-loci peak height balance, heterozygous peak height ratio, incomplete non-template nucleotide addition, and stutter.
The invention provides methods and systems for ruggedizing a nucleic acid analyzing apparatus. The ruggedized apparatus can be used reliably and effectively in uncontrolled environments, such as, for example at a crime scene to collect and analyze forensic data, as well as in semi-controlled environments, such as, for example at a point of care location.