A system for recoating a powder bed includes a build platform holding a powder bed and an electrode assembly including an electrode and an insulating shield. A voltage supply produces a high voltage alternating current and communicates with the powder bed and the electrode. The electrode assembly is positionable over the powder bed, such that when the electrode assembly is over the powder bed, the shield is between the electrode and the powder bed's top surface. The voltage supply produces a high voltage alternating current that creates an alternating electric field between the electrode and the powder bed that causes the powder of the powder bed top surface to oscillate in a region between the shield and the bed and then reposition themselves on the bed such that the top layer of the powder bed is smoother than it was prior to when the powder particles began oscillating.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
A system for recoating a powder bed includes a build platform holding a powder bed and an electrode assembly including an electrode and an insulating shield. A voltage supply produces a high voltage alternating current and communicates with the powder bed and the electrode. The electrode assembly is positionable over the powder bed, such that when the electrode assembly is over the powder bed, the shield is between the electrode and the powder bed's top surface. The voltage supply produces a high voltage alternating current that creates an alternating electric field between the electrode and the powder bed that causes the powder of the powder bed top surface to oscillate in a region between the shield and the bed and then reposition themselves on the bed such that the top layer of the powder bed is smoother than it was prior to when the powder particles began oscillating.
B33Y 40/20 - Post-treatment, e.g. curing, coating or polishing
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
A system for recoating a powder bed includes a build platform holding a powder bed and an electrode assembly including an electrode and an insulating shield. A voltage supply produces a high voltage alternating current and communicates with the powder bed and the electrode. The electrode assembly is positionable over the powder bed, such that when the electrode assembly is over the powder bed, the shield is between the electrode and the powder bed's top surface. The voltage supply produces a high voltage alternating current that creates an alternating electric field between the electrode and the powder bed that causes the powder of the powder bed top surface to oscillate in a region between the shield and the bed and then reposition themselves on the bed such that the top layer of the powder bed is smoother than it was prior to when the powder particles began oscillating.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
A system for recoating a powder bed includes a build platform holding a powder bed and an electrode assembly including an electrode and an insulating shield. A voltage supply produces a high voltage alternating current and communicates with the powder bed and the electrode. The electrode assembly is positionable over the powder bed, such that when the electrode assembly is over the powder bed, the shield is between the electrode and the powder bed's top surface. The voltage supply produces a high voltage alternating current that creates an alternating electric field between the electrode and the powder bed that causes the powder of the powder bed top surface to oscillate in a region between the shield and the bed and then reposition themselves on the bed such that the top layer of the powder bed is smoother than it was prior to when the powder particles began oscillating.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
A system for recoating a powder bed includes a build platform holding a powder bed and an electrode assembly including an electrode and an insulating shield. A voltage supply produces a high voltage alternating current and communicates with the powder bed and the electrode. The electrode assembly is positionable over the powder bed, such that when the electrode assembly is over the powder bed, the shield is between the electrode and the powder bed's top surface. The voltage supply produces a high voltage alternating current that creates an alternating electric field between the electrode and the powder bed that causes the powder of the powder bed top surface to oscillate in a region between the shield and the bed and then reposition themselves on the bed such that the top layer of the powder bed is smoother than it was prior to when the powder particles began oscillating.
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B29C 64/188 - Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B22F 10/00 - Additive manufacturing of workpieces or articles from metallic powder
B28B 1/00 - Producing shaped articles from the material
A system for recoating a powder bed includes a platform holding a powder bed, a brush and an electrode assembly including an electrode and insulating shield. After powder is distributed on the powder bed the top surface of the powder bed is smoothed by the brush. A voltage supply produces a high voltage alternating current and communicates with the powder bed and the electrode. When the electrode assembly is positioned over the powder bed, the shield is between the electrode and powder bed top surface. The voltage supply produces a high voltage alternating current that creates an alternating electric field between the electrode and the powder bed that causes the powder on the top surface to oscillate in a region between the shield and the bed and then reposition themselves on the bed such that the top layer of the powder bed is smoother than it was prior to when the powder particles began oscillating.
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B33Y 30/00 - ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING - Details thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
A powder feeder includes a hopper holding powder particles and a rotating conductive wheel having a rim. The rim has a powder landing surface in a groove in the rim. As the wheel rotates, the powder landing surface is disposed below the hopper. A voltage supply electrically communicates with an electrode and the wheel. The electrode and powder landing surface have a space between them. An insulator is disposed between the electrode and the wheel. The voltage supply produces an AC electric potential between the electrode and the rim that creates an alternating electric field within the space. An outlet chamber is positioned below the wheel. The electric field created within the space causes powder particles falling onto the powder landing surface and rotating under the electrode to develop an electrical surface charge. An electrostatic force causes powder particles to oscillate between the pile and the insulator. After a period of oscillation the particles drop over the edges of the rim and into the chamber.
A electrostatic powder feeder includes a body having a cavity. The cavity is shaped and sized to hold a supply of powder particles and is defined by a cavity wall. A diverter is disposed in the cavity and positioned away from the cavity wall so as to create a powder flow space between the diverter and cavity wall. The feeder includes an electrode and a powder landing surface connected to a power supply. The electrode is positioned remotely from the powder landing surface at a distance at which it can act upon powder resting upon the powder landing surface. An aperture through which powder particles may fall is disposed in or proximate to the powder landing surface. An insulator is positioned between the electrode and the powder landing surface. The power supply produces an alternating electric potential that creates an alternating electric field between the electrode and powder landing surface that causes powder particles to oscillate and eventually fall through the aperture. In an alternative embodiment, the powder landing surface is on a diaphragm connected to the body and disposed below the powder flow space. The diaphragm is sized and shaped to hold a quantity of powder falling from the powder flow space. The diaphragm includes an aperture. A vibration actuator is affixed to the diaphragm, which provides a vibratory force to the powder particles.
G05D 7/06 - Control of flow characterised by the use of electric means
B05B 7/14 - Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
B05B 5/16 - Arrangements for supplying liquids or other fluent material
B05B 5/04 - Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements
B05B 5/00 - Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
A electrostatic powder feeder includes a body having a cavity. The cavity is shaped and sized to hold a supply of powder particles and is defined by a cavity wall. A diverter is disposed in the cavity and positioned away from the cavity wall so as to create a powder flow space between the diverter and cavity wall. The feeder includes an electrode and a powder landing surface connected to a power supply. The electrode is positioned remotely from the powder landing surface at a distance at which it can act upon powder resting upon the powder landing surface. An aperture through which powder particles may fall is disposed in or proximate to the powder landing surface. An insulator is positioned between the electrode and the powder landing surface. The power supply produces an alternating electric potential that creates an alternating electric field between the electrode and powder landing surface that causes powder particles to oscillate and eventually fall through the aperture. In an alternative embodiment, the powder landing surface is on a diaphragm connected to the body and disposed below the powder flow space. The diaphragm is sized and shaped to hold a quantity of powder falling from the powder flow space. The diaphragm includes an aperture. A vibration actuator is affixed to the diaphragm, which provides a vibratory force to the powder particles.
B05B 5/00 - Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
B05B 7/14 - Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
B05B 5/16 - Arrangements for supplying liquids or other fluent material
B05B 5/04 - Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements
G05D 7/06 - Control of flow characterised by the use of electric means
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling
An apparatus for feeding powder particles includes a hopper holding a supply of powder. A voltage supply is in electrical communication with a first electrode and a second electrode. The hopper is configured to drop powder onto the first electrode. The voltage supply is capable of producing an electric potential between the first electrode and second electrode and causing the powder particles landing on the first electrode to develop a surface charge. The second electrode is positioned remotely from the first electrode such that the electric field between the first electrode and the second electrode causes the powder particles that fall onto the first electrode to move off the first electrode and move toward the second electrode. The powder particles moving toward the second electrode may or may not reach the electrode, but in either case drop away from the second electrode due to the force of gravity.
A45D 24/22 - Combs with dispensing devices for liquids, pastes or powders
B65D 83/00 - Containers or packages with special means for dispensing contents
B65D 88/66 - Large containers characterised by means facilitating filling or emptying preventing bridge formation using vibrating or knocking devices
B23K 26/144 - Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
C23C 24/10 - Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
B23K 26/14 - Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
B05B 5/03 - Discharge apparatus, e.g. electrostatic spray guns characterised by the use of gas
B33Y 40/00 - Auxiliary operations or equipment, e.g. for material handling