A phased array antenna may include an antenna substrate, an array of antenna elements carried by the antenna substrate, and time delay units (TDUs) coupled to the array of antenna element. Each time delay unit may include a circuit substrate, and delay circuits carried by the circuit substrate and coupled in series. Each delay circuit may have a respective signal delay value. At least one external bypass connection is carried by the circuit substrate and is coupled to the delay circuits to configure an overall time delay of the time delay unit.
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elementsArrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
H01Q 3/24 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
2.
SENSING SYSTEM HAVING A MEMS NITROGEN VACANCY SENSING DEVICE AND RELATED METHODS
A sensing system may include a microelectromechanical system (MEMS) device that may include a MEMS substrate having a resonator cavity formed therein, at least one MEMS resonator beam carried by the MEMS substrate within the resonator cavity, and a diamond layer carried by the substrate above the resonator cavity. The diamond layer may include at least one nitrogen vacancy center (NVC) aligned with the at least one MEMS resonator beam. A resonator drive circuit may be coupled to drive the at least one MEMS resonator beam. A sensing circuit may be associated with the at least one nitrogen vacancy center to infer small changes in a magnetic field acceleration from phase perturbations in local magnetic field resonance.
G01R 33/032 - Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday
B81B 7/02 - Microstructural systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
G01R 33/00 - Arrangements or instruments for measuring magnetic variables
G01R 33/26 - Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux using optical pumping
3.
PHASED ARRAY ANTENNA WITH RECONFIGURABLE TIME DELAY UNITS AND ASSOCIATED METHODS
A phased array antenna may include an antenna substrate, an array of antenna elements carried by the antenna substrate, and time delay units (TDUs) coupled to the array of antenna elements. Each time delay unit may include a circuit substrate, and delay circuits carried by the circuit substrate and coupled in series. Each delay circuit has a controllable respective signal delay value. At least one first delay circuit of the delay circuits may include a bypassable delay circuit having a bypassable signal loss, and at least one second delay circuit of the delay circuits may include a non-bypassable delay circuit having a non-bypassable signal loss.
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elementsArrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
4.
POINTING, ACQUISITION, AND TRACKING SYSTEM FOR A MOBILE-PLATFORM OPTICAL COMMUNICATION SYSTEM
Florida Atlantic University Board of Trustees (USA)
Inventor
Miller, Warner Allen
Dodd, Joseph
Lange, Michael
Corey, Christopher A.
Abstract
An optical communication receiver system for a mobile platform includes: a surface having an entrance aperture for entry of an optical communication signal from a remote source; an optical receiver to receive the optical communication signal through the entrance aperture; a reflective layer over at least a portion of the surface to at least partially reflect an alignment beam that is substantially coincident with the optical communication signal; a camera positioned to detect the reflected alignment beam; a processor to determine alignment information about the alignment beam relative to the entrance aperture based on the reflected alignment beam detected by the camera; and a transmitter to transmit the alignment information to the remote source to enable the remote source to center the optical communication signal in the entrance aperture.
A method comprising: forming a polyimide layer; forming a thin film resistor on the polyimide layer; forming, on the thin film resistor and the polyimide layer, a metallization layer that includes metal contacts on opposing ends of the thin film resistor but leaves an exposed surface of the polyimide layer; baking the polyimide layer, the thin film resistor, and the metallization layer to remove water from the polyimide layer; forming, on the exposed surface of the polyimide layer, a hydrophobic moisture barrier layer that prevents absorption of water into the polyimide layer to avoid blistering of the thin film resistor during subsequent laser trimming of the thin film resistor; and laser trimming a resistance of the thin film resistor between the metal contacts.
H01C 7/00 - Non-adjustable resistors formed as one or more layers or coatingsNon-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
H01C 17/22 - Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
H01C 17/30 - Apparatus or processes specially adapted for manufacturing resistors adapted for baking
H01L 21/48 - Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups or
H01L 27/01 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
6.
SYSTEMS AND METHODS FOR RADIO FREQUENCY SENSING OF SEISMIC EVENTS
Systems and methods for detecting or predicting a seismic event. The methods comprise, by a system: receiving at least one communication signal using a carrier recovery component with a fixed location remote from a source of the at least one communication signal; determining at least one of (i) phase deviations of the at least one communication signal over time and (ii) differential propagation delays over two paths which the at least one communication signal traveled; performing operations to detect patterns in at least one of the phase deviations and differential propagation delays that indicate an occurrence of seismic activity with level(s) of confidence; and using the level(s) of confidence to detect or predict the seismic event.
G01V 3/12 - Electric or magnetic prospecting or detectingMeasuring magnetic field characteristics of the earth, e.g. declination or deviation operating with electromagnetic waves
A quantum communications system includes a communications system that operates with a quantum key distribution (QKD) system, which includes a transmitter node, a receiver node, and a quantum communications channel coupling the transmitter node and receiver node. The transmitter node may be configured to transmit to the receiver node a bit stream of optical pulses, and switch between first and second QKD protocols based upon at least one channel condition.
Systems and methods for operating a quantum processor. The methods comprise: training one or more quantum neural networks using modulation class data to make decisions as to a modulation classification for a signal based on one or more feature inputs for the signal; obtaining, by the quantum processor, principle components of real and imaginary components of a signal received by a communication device; and performing first quantum neural network operations by the quantum processor using the principle components as inputs to the trained one or more quantum neural networks to generate a plurality of scores, wherein each said score represents a likelihood that the received signal was modulated using a given modulation type of a plurality of different modulation types.
An electronic enclosure having improved cooling capacity using a radial fin pattern that is fabricated using additive manufacturing methods is disclosed.
An electronic device may include an IC, a grid array substrate, and a multi-level interposer coupled between the IC and the grid array substrate. The multi-level interposer may have dielectric layers, and a sequence of metal levels carried by respective dielectric layers, and an RF sloped via including a sloped metal signal layer extending from a first metal level, through a second metal level, and to a third metal level, and a respective sloped lateral metal ground layer adjacent each side of the sloped metal signal layer.
H01L 21/48 - Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups or
Metering structure includes a rigid strut configured to support an optical element. A rigid shield mounted on the strut has a shield length which is substantially coextensive with the elongated length of the rigid strut such that rigid shield substantially encloses the strut along the entire shield length. The rigid shield has a surface finish which is highly absorptive of electromagnetic radiation in the optical spectrum. One or more thermal insulating material layers comprise a multi-layer insulation (MLI) system disposed between the rigid strut and the rigid shield. Rigid and flexure brackets secure the rigid shield to the strut.
A spaceborne antenna for a satellite may include antenna sections for the satellite, and at least one rolling flex hinge rotatably coupling first and second antenna sections together and permitting rotation between a stored position and a deployed position. The first and second antenna sections may be stacked in the stored position and extended in end-to-end relation in the deployed position. The at least one rolling flex hinge may include a first hinge body coupled to an end of the first antenna section, a second hinge body coupled to an end of the second antenna section, and a flexible strap arrangement coupling the first hinge body and second hinge body together to permit rolling contact therebetween. At least one locking linkage may be coupled between the first and second hinge bodies to lock the first and second hinge bodies when the first and second antenna sections are in the deployed position.
H01Q 3/04 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation
H01Q 1/28 - Adaptation for use in or on aircraft, missiles, satellites, or balloons
13.
DISTRIBUTED ACOUSTIC SENSING (DAS) SYSTEM FOR ACOUSTIC EVENT DETECTION BASED UPON COVARIANCE MATRICES AND RELATED METHODS
A distributed acoustic sensing (DAS) system may include an optical fiber, a phase-sensitive OTDR (ϕ-OTDR) coupled to the optical fiber, and a processor cooperating with the ϕ-OTDR. The processor may be configured to generate a series of covariance matrices for DAS data from the ϕ-OTDR, and determine an acoustic event based upon comparing the series of covariance matrices with a corresponding Toeplitz matrix.
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
14.
DISTRIBUTED ACOUSTIC SENSING (DAS) SYSTEM FOR ACOUSTIC EVENT DETECTION USING MACHINE LEARNING NETWORK SELECTED BY GAME THEORETIC MODEL AND RELATED METHODS
A distributed acoustic sensing (DAS) system may include an optical fiber, a phase-sensitive OTDR (ϕ-OTDR) coupled to the optical fiber, and a processor cooperating with the ϕ-OTDR. The processor may be configured to train a plurality of machine learning networks with DAS data from the ϕ-OTDR based upon different respective optimizers, select a trained machine learning network from among the plurality thereof based upon a game theoretic model, and generate an acoustic event report from the DAS data using the selected trained machine learning network.
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G06N 3/0442 - Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
A distributed acoustic sensing (DAS) system may include an optical fiber, a phase-sensitive OTDR (ϕ-OTDR) coupled to the optical fiber, and a processor cooperating with the ϕ-OTDR. The processor may be configured to generate a series of covariance matrices for DAS data from the ϕ-OTDR, determine acoustic events based upon the covariance matrices and a machine learning network, and generate an acoustic event report from the acoustic events.
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
An object detection device may include a variational autoencoder (VAE) configured to encode image data to generate a latent vector, and decode the latent vector to generate new image data. The object detection device may also include a quantum computing circuit configured to perform quantum subset summing, and a processor. The processor may be configured to generate a game theory reward matrix for a plurality of different deep learning models, cooperate with the quantum computing circuit to perform quantum subset summing of the game theory reward matrix, select a deep learning model from the plurality thereof based upon the quantum subset summing of the game theory reward matrix, and process the new image data using the selected deep learning model for object detection.
G06V 10/75 - Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video featuresCoarse-fine approaches, e.g. multi-scale approachesImage or video pattern matchingProximity measures in feature spaces using context analysisSelection of dictionaries
G06N 10/60 - Quantum algorithms, e.g. based on quantum optimisation, or quantum Fourier or Hadamard transforms
G06V 10/762 - Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
17.
ELECTRONIC DEVICE WITH MULTI-DIAMETER FEMALE CONTACTS AND RELATED METHODS
An electronic device may include a connector having a connector body and conductive pins extending outwardly from the connector body, and a circuit board having a dielectric layer, and spaced apart female contacts extending therein. Each female contact may include a conductive tubular via, a core within the conductive tubular via, and a conductive cup having a lower end abutting and joined to the conductive tubular via and an upper end defining a recess receiving a corresponding conductive pin of the connector. The conductive cup may have an outer diameter greater than an outer diameter of the conductive tubular via.
An optical system for use with a vacuum chamber may include a target to be positioned within the vacuum chamber, a laser source, and an optical assembly to be positioned within the vacuum chamber between the target and the laser source. The optical assembly may include a housing, a frame, a lens carried by the frame, and spiral flexures each having a respective proximal end coupled to the frame. In addition, the optical assembly may include a plurality of flexure actuators, where each flexure actuator is coupled between the housing and a distal end of a respective spiral flexure.
A method for making a nanodiamond article includes applying an adhesion promoting layer to a substrate, and electrophoretically depositing a nanodiamond film on the substrate with the adhesion promoting layer thereon in a solution to make the nanodiamond article. The nanodiamond article may include a substrate, a nanodiamond film over the substrate, and the adhesion promoting layer between the substrate and the nanodiamond film.
A synthetic aperture radar (SAR) for a flight vehicle may include an elongate phased array antenna oriented with a long axis in an elevation direction. The elevation direction is normal to a direction of flight of the flight vehicle. A transmitter is coupled to the elongate phased array antenna, and a receiver is coupled to the elongate phased array antenna. A controller is coupled to the transmitter and receiver and is configured to generate temporally alternating sets of receive beams for respective swaths to be used to form a SAR image across a surface below the flight vehicle. The same center frequency is used to create consistent SARs for all swaths, allowing for coherent combination between subsequent passes over the same swath.
An outer space-based debris detection system may include a network of satellites. A first satellite may be configured to propagate a first series of solitary plasma waves through an outer space detection area having a debris body therein. The debris body propagates second plasma waves therefrom. A second satellite associated with the detection area may be configured to receive the first series of solitary plasma waves from the first satellite after interaction with the second plasma waves from the debris body to thereby detect the debris body.
A hybrid propulsion engine for a satellite that includes a satellite housing and electronics carried by the satellite housing, may include a rechargeable electrical power source carried by the satellite housing. The hybrid propulsion engine may also include a combustible fuel supply carried by the satellite housing, and an engine housing defining a combustion chamber for fuel from the combustible fuel supply. The hybrid propulsion engine may also include an electrical arc heater associated with the combustion chamber and configured to supply additional heat from the rechargeable electrical power source, and an exhaust nozzle downstream from the combustion chamber.
B64G 1/40 - Arrangements or adaptations of propulsion systems
B64G 1/42 - Arrangements or adaptations of power supply systems
23.
Satellite automatic identification system (AIS) for determining potential spoofing maritime vessels based upon actual frequency of arrival of AIS messages and related methods
An Automatic Identification System (AIS) for tracking a plurality of maritime vessels may include a ground AIS server and a constellation of Low-Earth Orbit (LEO) satellites in communication with the ground AIS server. Each LEO satellite may include an AIS payload configured to receive AIS messages from the plurality of maritime vessels and determine therefrom reported vessel position data, determine an actual frequency of arrival (FOA) for each of the AIS messages, determine an expected FOA for each of the AIS messages based upon the reported vessel position data for each AIS message, determine a potential spoofing maritime vessel based upon a difference between a corresponding expected FOA and actual FOA for a given AIS message, and send a potential spoof alert to the ground AIS server.
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using radio waves
G01S 5/06 - Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
A space antenna may include an extendible boom movable between stored and deployed positions. An extendible hoop may surround the extendible boom and is movable between the stored and deployed positions. A front cord arrangement may be coupled to the extendible hoop and defines a curved shape in the deployed position, and a reflective layer may be carried thereby. A rear cord arrangement may be behind the front cord arrangement and coupled between the extendible hoop and the extendible boom. The rear cord arrangement may include a rear plurality of interconnected cords defining rear polygons. Tie cords may extend between the front cord arrangement and the rear cord arrangement. A top cord arrangement may be above the reflective layer and coupled between the hoop and the extendible boom.
An electronic assembly may include a chassis, and electronic modules mounted within the chassis. Each electronic module may include a printed circuit substrate, heat-generating electronic components mounted on the printed circuit substrate, and a heat sink body mounted to the printed circuit substrate and having a plurality of heat pipe receiving passageways extending between opposing side edges and overlying corresponding heat-generating components. A respective elongate, passive, heat pipe may extend within each heat pipe receiving passageway and be removably fastened to at least one end to the heat sink body for enhanced conductive heat transport.
Baffle and shutter assembly (BSA) includes a baffle defined by a tubular member having a proximal end, a distal end, and a lumen extending therethrough. A baffle cover disposed at the distal end extends across a major aperture defined by the lumen and includes a cover aperture. A shutter system disposed within the lumen includes a shutter panel having a shutter aperture, and a shutter door. A door distal surface faces the baffle cover when the door is closed and has a reflective coating. The baffle cover has a cover proximal surface which faces toward the shutter system and is highly absorptive of electromagnetic energy in the optical spectrum.
A communications device may include an RF device, and an antenna coupled to the RF device. The RF device may have a conductive ground plane, a conductive support rod carried by the conductive ground plane and extending outwardly therefrom, and a conductive body coupled to and surrounding the conductive support rod. The conductive body may have a helical slot to define a helical slot radiating antenna.
A change detection device may include a variational autoencoder (VAE) configured to encode image data to generate a latent vector, and decode the latent vector to generate new image data. The change detection device may further include a controller configured to select a deep learning model from different deep learning models based upon the new image data and a game theory reward matrix, and process the new image data using the selected deep learning model to detect changes therein.
G06V 10/82 - Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
G06V 10/764 - Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
A communications device may include an RF device, and an antenna coupled to the RF device. The antenna may have a conductive ground plane, a conductive support rod carried by the conductive ground plane and extending outwardly therefrom, and a conductive body coupled to and surrounding the conductive support rod. The conductive body has vertically spaced rhombus shaped slots therein to define a radiating antenna.
An antenna may include rigid antenna ribs, a flexible antenna reflector layer, and a flexible support member extending behind the flexible antenna reflector layer between adjacent antenna ribs and having first and second sets of openings therein. A drawstring may extend through the first set of openings between adjacent ribs and a rear support cord is behind the flexible support member between adjacent ribs. Tie cords may extend between the flexible antenna reflector layer and the rear support cord and pass through respective ones of the second set of openings. A biasing member may maintain tension in the drawstring as adjacent antenna ribs move between first and second positions so that the flexible support member defines a pleated support body for the flexible antenna reflector layer.
H01Q 15/16 - Reflecting surfacesEquivalent structures curved in two dimensions, e.g. paraboloidal
H01Q 1/28 - Adaptation for use in or on aircraft, missiles, satellites, or balloons
H01Q 19/12 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
31.
ELECTRONIC DEVICE INCLUDING RIGID DIELECTRIC LID AND OVERLAYING THERMOSET POLYMER LAYER AND RELATED METHODS
An electronic device may include a dielectric substrate and bond wire pads on an upper surface thereof. The electronic device may also include a radio frequency (RF) integrated circuit (IC) mounted to the upper surface of the dielectric substrate and bond wires coupling the RF IC to respective bond wire pads. The electronic device may also include a rigid dielectric lid mounted to the upper surface of the dielectric substrate to define an air cavity above the RF IC and the bond wires, and a thermosetting polymer layer over the rigid dielectric lid.
H01L 23/31 - Encapsulation, e.g. encapsulating layers, coatings characterised by the arrangement
H01L 21/52 - Mounting semiconductor bodies in containers
H01L 21/56 - Encapsulations, e.g. encapsulating layers, coatings
H01L 23/00 - Details of semiconductor or other solid state devices
H01L 23/053 - ContainersSeals characterised by the shape the container being a hollow construction and having an insulating base as a mounting for the semiconductor body
H01L 23/20 - Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device gaseous at the normal operating temperature of the device
32.
RF SIGNAL CLASSIFICATION DEVICE INCORPORATING QUANTUM COMPUTING WITH GAME THEORETIC OPTIMIZATION AND RELATED METHODS
A radio frequency (RF) signal classification device may include an RF receiver configured to receive RF signals, a quantum computing circuit configured to perform quantum subset summing, and a processor. The processor may be configured to generate a game theory reward matrix for a plurality of different deep learning models, cooperate with the quantum computing circuit to perform quantum subset summing of the game theory reward matrix, select a deep learning model from the plurality thereof based upon the quantum subset summing of the game theory reward matrix, and process the RF signals using the selected deep learning model for RF signal classification.
Systems and methods for operating a deployable reflector system. The methods comprising: causing a proximal end of a first link element (LE) located at a first end of a scissoring rib assembly (SRA) to slidingly engage a hub; allowing a proximal end of a second LE of SRA to pivot relative to the hub so as to cause scissor motion of SRA while the first LE is slidingly engaging the hub; causing a distal end of a third LE located at a second end of SRA to pivot relative to the edge member during the scissor motion of SA; allowing the edge member to slidingly engage a fourth LE located at the second end of SRA during pivotal motion of the third LE; and using the edge member to cause vertical movement of a peripheral edge of a reflector relative to the hub while the edge member slidingly engages the fourth LE.
H01Q 15/16 - Reflecting surfacesEquivalent structures curved in two dimensions, e.g. paraboloidal
H01Q 19/12 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
H01Q 19/13 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
Stray light in a metering structure is controlled by surrounding with a rigid shield an elongated length of a strut and supporting on the rigid shield a surface finish which is highly absorptive of light. The strut is thermally decoupled from the rigid shield using a plurality of insulating web layers comprising a multi-layer insulation (MLI) system disposed between the strut and the rigid shield. The MLI in such scenarios (1) thermally isolates the strut from the shield (2) serves as a support structure to support the rigid shield on the strut, and (3) absorbs thermally induced mechanical stresses as between the rigid shield and the strut.
A cognitive radio device may include an RF receiver configured to receive interfering RF signals, an RF transmitter configured to be selectively operated, a quantum computing circuit configured to perform quantum subset summing, and a processor. The processor may be configured to generate a game theory reward matrix for a plurality of different deep learning models, cooperate with the quantum computing circuit to perform quantum subset summing of the game theory reward matrix, select a deep learning model from the plurality thereof based upon the quantum subset summing of the game theory reward matrix, and process the received interfering RF signals using the selected deep learning model for selectively operating the RF transmitter.
G01S 7/41 - Details of systems according to groups , , of systems according to group using analysis of echo signal for target characterisationTarget signatureTarget cross-section
G06N 10/20 - Models of quantum computing, e.g. quantum circuits or universal quantum computers
Systems and methods for providing an electronic cooling apparatus comprising a chassis having an internal space that is sized/shaped to receive/structurally support circuit card(s). The internal space defined by sidewalls with a channel formed therein in which a coolant is disposed. The coolant is in thermal communication with the circuit card(s) via the sidewall(s) when the circuit card(s) is(are) disposed in the chassis. A refrigerant-based cooling system is disposed in the chassis and comprises an evaporator having inlet/outlet ports coupled to the channel of the chassis to define a first closed-loop channel for the coolant within the chassis. The evaporator facilitates heat transfer from the coolant to a refrigerant flowing through a second closed-loop channel of the chassis at least partially defined by the evaporator. A pump is disposed in the chassis and configured to cause the coolant to flow through the first closed-loop channel.
A cognitive radio system may include cognitive radio frequency (RF) radios and a controller configured to selectively change at least one operating parameter of the cognitive RF radios based upon a cognitive group hierarchy. The cognitive group hierarchy may include a first group based upon a signal modulation classification, a second group based upon a waveform requirement, a third group based upon an optimal cognitive RF radio path, a fourth group based upon a cognitive RF radio dynamic spectrum allocation, and a fifth group based upon frequency hopping.
A cognitive radio device may include a radio frequency (RF) detector, an RF transmitter having a selectable hopping frequency window, and a controller. The controller may be configured to cooperate with the RF detector and RF transmitter to detect a jammer signal, determine a jammer type associated with the jammer signal from among a plurality of different jammer types based upon a game theoretic model, and operate the RF transmitter to change the selectable hopping frequency window responsive to the determined jammer type of the jammer signal.
An electronic assembly may include a chassis having electronic module mounting positions. Each mounting position may have associated therewith a chassis liquid dual-flow connector. A respective electronic module may be received in each electronic module mounting position and include a circuit board, a liquid cooling path associated with the circuit board, and a module liquid dual-flow connector coupled to the liquid cooling path and configured to be mateable with the chassis liquid dual-flow connector.
F16L 37/34 - Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings at least one of two lift valves being opened automatically when the coupling is applied at least one of the lift valves being of the sleeve type, i.e. a sleeve being telescoped over an inner cylindrical wall
F16L 37/35 - Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings at least one of two lift valves being opened automatically when the coupling is applied at least one of the valves having an axial bore communicating with lateral apertures
An electronic assembly may include a chassis having electronic module mounting positions and respective electronic modules received in each electronic module mounting position. A respective retainer may be coupled between the chassis and each electronic module. Each retainer may include a retainer body coupled to the chassis, and a liquid coupling body carried by the retainer body and movable between retracted and extended positions permitting insertion and removal of the electronic module. The liquid coupling body may have a retainer liquid outlet and a retainer liquid inlet configured to engage a module liquid inlet and module liquid outlet, respectively, when moved from the retracted position to the extended position.
Systems and methods for facilitating temperature regulation of an electronic module. The methods comprise: coupling first heat exchanger modules of a plurality of heat exchanger modules together to form a first set of heat exchanger modules and second heat exchanger modules of the plurality of heat exchanger modules together to form a second set of heat exchanger modules; using frame members to structurally support and maintain the first and second sets of heat exchanger modules in a spaced apart arrangement; and providing at least one slot between corresponding spaced apart modules of the first and second heat exchanger modules, the at least one slot being sized and shaped to receive the electronic module to facilitate the temperature regulation via the plurality of heat exchanger modules.
A perturbation radio frequency (RF) signal generator is provided which generates a perturbed RF output signal to cause a signal classification change by an RF signal classifier. The perturbation RF signal generator may include a quantum computing circuit configured to perform quantum subset summing; and a processor. The processor may be configured to generate a game theory reward matrix for a plurality of different deep learning signal perturbation models, cooperate with the quantum computing circuit to perform quantum subset summing of the game theory reward matrix, select a deep learning signal perturbation model from the plurality thereof based upon the quantum subset summing of the game theory reward matrix, and generate the perturbed RF output signal based upon the selected deep learning signal perturbation model to cause the signal classification change in the RF signal classifier.
An Automatic Dependent Surveillance Broadcast (ADS-B) system may include a plurality of ADS-B terrestrial stations, with each ADS-B terrestrial station comprising an antenna and wireless circuitry associated therewith defining a station gain pattern. The system may further include a controller including a variational autoencoder (VAE) configured to compress station pattern data from the plurality of ADS-B terrestrial stations, create a normal distribution of the compressed data in a latent space of the VAE, and decompress the compressed station pattern data from the latent space. The controller may also include a processor coupled to the VAE and configured to process the decompressed station pattern data using a probabilistic model selected from among different probabilistic models based upon a game theoretic reward matrix, determine an anomaly from the processed decompressed station pattern data, and generate an alert (e.g., a station specific alert) based upon the determined anomaly.
Systems and methods for operating a communication device. The methods comprise: receiving a signal at the communication device; performing, by the communication device, one or more machine learning algorithms using at least one feature of the signal as an input to generate a plurality of scores (each score representing a likelihood that the signal was modulated using a given modulation type of a plurality of different modulation types); assigning a modulation class to the signal based on the plurality of scores; determining whether a given wireless channel is available based at least on the modulation class assigned to the signal; and selectively using the given wireless channel for communicating signals based on results of the determining.
An electronic assembly includes a chassis having electronic module mounting positions. The electronic assembly also includes a respective electronic module received in each electronic module mounting position and having a module cooling gas passageway. Each electronic module has a module glide surface. The electronic assembly includes a respective sealing retainer coupled between the chassis and each electronic module. The sealing retainer has a cooling gas passageway aligned with a chassis cooling gas passageway and the module cooling gas passageway. The sealing retainer includes a retainer body having a retainer glide surface, and a gas sealing gasket carried by the retainer body. The module glide surface and the retainer glide surface have respective cooperating features so that the respective electronic module is maintained in spaced relation from the sealing gasket as the respective electronic module is slidably inserted into a seated position.
Metering structure includes a rigid strut configured to support an optical element. A rigid shield mounted on the strut has a shield length which is substantially coextensive with the elongated length of the rigid strut such that rigid shield substantially encloses the strut along the entire shield length. The rigid shield has a surface finish which is highly absorptive of electromagnetic radiation in the optical spectrum. One or more thermal insulating material layers comprise a multi-layer insulation (MLI) system disposed between the rigid strut and the rigid shield. Rigid and flexure brackets secure the rigid shield to the strut.
An electronic assembly includes a chassis having electronic module mounting positions, each having an electronic module received therein. A module recess is adjacent a first end of the electronic module and a module roller is adjacent a second end. A sealing retainer is coupled between the chassis and each electronic module, and includes a cooling gas passageway aligned with a chassis cooling gas passageway and a module cooling gas passageway. The sealing retainer includes a rigid retainer body having a retainer recess adjacent a first end to receive the module roller when the electronic module is in an inserted position. A retainer roller is received in a module recess and a compressible retainer body is between the rigid retainer body and the chassis.
A sealing retainer may be coupled between a chassis and an electronic module. The sealing retainer includes a retainer body to be coupled to the chassis and a first cooling gas passageway that may be aligned with a chassis cooling gas passageway. A gas seal body has a second cooling gas passageway aligned with the first cooling gas passageway and coupled to the retainer body and movable between a retracted position that permits insertion and removal of the electronic module and an extended position that seals against the electronic module.
Methods of producing an optical surface atop an exterior of a substrate that includes smoothing the exterior using an ALD process to sequentially deposit ALD layers to produce one or more ALD films that fill spaces between spaced-apart asperities existing on the exterior, and thereafter depositing a reflective material on the smoothed exterior of the substrate to produce the optical surface. The smoothing resulting from depositing the ALD film on the exterior of the substrate causes the grain size of the reflective material to be reduced in comparison to the grain size that would exists without having deposited the ALD film on the exterior of the substrate. The smoothing is sufficient to cause a reduction in grain size that results in a reduction in plasmon absorption in the optical surface in comparison to the plasmon absorption that would otherwise exist without having reduced the grain size of the reflective material.
C23C 16/455 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into the reaction chamber or for modifying gas flows in the reaction chamber
C23C 16/02 - Pretreatment of the material to be coated
C23C 28/04 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and only coatings of inorganic non-metallic material
Methods of forming a mirror by bonding a faceplate to a core structure using adhesive formulations that include fused silica particles having diameters that range between 1 to 60 micrometers with an average diameter of the silica particles being between 8 to 10 micrometers. The adhesive formulation further includes an activator including 25 to 50 weight % sodium silicate, 25 to 50 weight % sodium hydroxide and a liquid. The fused silica particles constitute 70 to 80 weight % of the adhesive formulation and the activator constitute 20 to 30 weight % of the adhesive formulation.
An electronic assembly may include a chassis having electronic module mounting positions, each having a chassis cooling gas passageway and an electronic module received in each electronic module mounting position. A sealing retainer may be coupled between the chassis and each electronic module, and includes a cooling gas passageway aligned with the chassis cooling gas passageway and a module cooling gas passageway of a respective electronic module. The sealing retainer may include a retainer body, and a gas seal body coupled to the retainer body and movable between retracted and extended positions. The gas seal body in the retracted position permits insertion and removal of the electronic module, and in the extended position seals against the electronic module.
An optical switch has latched switch states and includes optical fibers that are laterally joined together to define an optical switching portion. At least one phase change material (PCM) layer is on the optical switching portion so that a phase of the PCM layer determines a latched switch state from among the latched switch states.
G02B 6/122 - Basic optical elements, e.g. light-guiding paths
G02B 6/35 - Optical coupling means having switching means
G02B 6/12 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
53.
Optical device having phase change material and associated methods
G02F 1/00 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
Methods of forming a mirror by bonding a faceplate to a core structure using adhesive formulations that include: (1) a binder comprising 40 to 60 weight % monoaluminum phosphate and 40 to 60 weight % water, the binder constituting 25 to 35 weight % of the adhesive formulation and, (2) a composition that includes a first set of particles having a coefficient of thermal expansion equal to or less than 0.05 ppm/° C. and diameters between 1 to 60 micrometers and a second set of particles having a coefficient of thermal expansion equal to or less than 0.05 ppm/° C. and diameters between 0.05 to 1 micrometers, the first set of particles constituting 80 to 85 weight % of the composition, the second set of particles constituting 15 to 20 weight % of the composition; the composition constituting 65 to 75 weigh % of the adhesive formulation.
A satellite communication system may include a constellation of cross-linked orbiting satellites, and an earth station gateway that includes an Internet port. Mobile wireless devices each include a satellite transceiver and a WiFi transceiver configured to communicate with another WiFi transceiver, in turn, configured to communicate with the Internet port. The mobile wireless device may also include a controller configured to communicate with other members of a respective push-to-talk (PTT) group via the satellite transceiver when a satellite link is available, communicate with the other members of the respective push-to-talk (PTT) group via the WiFi transceiver when a WiFi link is available and the satellite link is not available, maintain a first existing PTT call when switching from the satellite link to the WiFi link, and maintain a second existing PTT call when switching from the WiFi link to the satellite link.
A satellite communication system may include a constellation of cross-linked orbiting satellites and a network manager that maintains a database of push-to-talk (PTT) groups. A plurality of mobile wireless devices may each include a satellite transceiver and a WiFi transceiver. The mobile wireless device may each also include a controller configured to communicate with other members of a respective PTT group via the satellite transceiver when a satellite link is available, determine at least one ad hoc network link with an adjacent mobile wireless device using the WiFi transceiver, and communicate with the other members of the respective PTT group via the at least one ad hoc network link when the satellite link is not available.
H04W 4/10 - Push-to-talk [PTT] or push-on-call services
57.
SATELLITE AUTOMATIC IDENTIFICATION SYSTEM (AIS) FOR DETERMINING ACTUAL SPOOFING MARITIME VESSELS AND ASSOCIATED GEOGRAPHIC SPOOF SIZES AND RELATED METHODS
A satellite Automatic Identification System (AIS) is for tracking a plurality of maritime vessels and may include a ground AIS server and a constellation of Low-Earth Orbit (LEO) satellites in communication with the ground AIS server. Each LEO satellite may include an AIS payload configured to receive AIS messages from the plurality of maritime vessels and determine therefrom reported vessel position data, determine actual signal arrival measurements for the AIS messages, and determine a potential spoofing maritime vessel based upon the reported vessel position data and actual signal arrival measurements. The ground AIS server may be configured to determine an actual spoofing maritime vessel and associated geographic spoof size based upon the reported vessel position data and actual signal arrival measurements for the potential spoofing maritime vessel.
A DAS system may include an OTDR, and acoustic-sensing optical fibers coupled to the OTDR. The acoustic-sensing optical fibers may have known relative positions within an acoustic wave transmitting medium. The DAS system may also include a processor cooperating with the OTDR to determine a propagation direction of an acoustic wave from an acoustic event in the acoustic wave transmitting medium based upon the known relative positions of the acoustic-sensing optical fibers.
A satellite Automatic Identification System (AIS) is for tracking a plurality of maritime vessels. The AIS may include a ground AIS server and a constellation of Low-Earth Orbit (LEO) satellites in communication with the ground AIS server. Each LEO satellite may include an AIS payload configured to receive AIS messages from the plurality of maritime vessels and determine therefrom reported vessel position data, determine actual signal arrival measurements for the AIS messages, and determine a potential spoofing maritime vessel based upon the reported vessel position data and actual signal arrival measurements and send a potential spoof alert to the ground AIS server. The ground AIS server may be configured to perform time sequenced pairwise differential calculations of the actual signal arrival measurements from at least one of the AIS payloads and for the potential spoofing maritime vessel to estimate a position of the potential spoofing maritime vessel.
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using radio waves
60.
Method for making a radiation shield using fused filament deposition
A method for making a radiation shield includes generating a three-dimensional (3D) model for a metal body to serve as a radiation shield based upon a predetermined radiation stopping thickness for the metal and a predetermined strength based upon the metal and a pattern of voids therein. The method includes performing fused filament deposition to create the metal body having the pattern of voids therein.
B22F 5/10 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
61.
System and method for transport overhead and header field cybersecurity
Systems and methods for improving network element security. The methods comprise: obtaining a transport frame by the network element; analyzing, by the network element, the transport frame to determine whether or not any vulnerable overhead field values in at least one of a header of a mapping layer frame and a header of a transport layer frame have values other than expected values; modifying, by the network element, at least one reserved target field value in the transport frame when a determination is made that the at least one vulnerable overhead field value has a value other than the expected value; and communicating, by the network element, the transport frame with the modified at least one reserved target value over a network.
Systems and methods for detecting or predicting a seismic event. The methods comprise, by a system: receiving at least one communication signal using a carrier recovery component with a fixed location remote from a source of the at least one communication signal; determining at least one of (i) phase deviations of the at least one communication signal over time and (ii) differential propagation delays over two paths which the at least one communication signal traveled; performing operations to detect patterns in at least one of the phase deviations and differential propagation delays that indicate an occurrence of seismic activity with level(s) of confidence; and using the level(s) of confidence to detect or predict the seismic event.
G01V 3/12 - Electric or magnetic prospecting or detectingMeasuring magnetic field characteristics of the earth, e.g. declination or deviation operating with electromagnetic waves
Systems and methods for providing an electronic cooling apparatus comprising a chassis having an internal space that is sized/shaped to receive/structurally support circuit card(s). The internal space defined by sidewalls with a channel formed therein in which a coolant is disposed. The coolant is in thermal communication with the circuit card(s) via the sidewall(s) when the circuit card(s) is(are) disposed in the chassis. A refrigerant-based cooling system is disposed in the chassis and comprises an evaporator having inlet/outlet ports coupled to the channel of the chassis to define a first closed-loop channel for the coolant within the chassis. The evaporator facilitates heat transfer from the coolant to a refrigerant flowing through a second closed-loop channel of the chassis at least partially defined by the evaporator. A pump is disposed in the chassis and configured to cause the coolant to flow through the first closed-loop channel.
An electronic device may include a connector having a connector body and conductive pins extending outwardly from the connector body, and a circuit board having a dielectric layer, and spaced apart female contacts extending therein. Each female contact may include a conductive tubular via, a core within the conductive tubular via, and a conductive cup having a lower end abutting and joined to the conductive tubular via and an upper end defining a recess receiving a corresponding conductive pin of the connector. The conductive cup may have an outer diameter greater than an outer diameter of the conductive tubular via.
H05K 3/26 - Cleaning or polishing of the conductive pattern
H05K 3/30 - Assembling printed circuits with electric components, e.g. with resistor
H05K 3/34 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
An acousto-optic system may include a laser source, and an AOM coupled to the laser source and having an acousto-optic medium and transducer electrodes carried by the medium. The acousto-optic system may also include an interface board with a dielectric layer and signal contacts carried by the dielectric layer, and connections coupling respective signal contacts with respective transducer electrodes. Each connection may include a dielectric protrusion extending from the AOM, and an electrically conductive layer on the dielectric protrusion for coupling a respective transducer electrode to a respective signal contact.
G02F 1/11 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
G06N 10/00 - Quantum computing, i.e. information processing based on quantum-mechanical phenomena
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
A communications device includes an RF device, and an antenna coupled to the RF device. The antenna includes a conductive ground plane, an elongate support extending from the conductive ground plane, a helically wound conductive strip carried by a proximal end of the elongate support, and spaced apart conductive elements carried by a distal end of the elongate support to define an RF lens for the helically wound conductive strip.
Systems and methods. The methods comprise: causing bellows to transition from expanded states to collapsed states by removing a first fluid therefrom (the bellows being coupled to opposing sidewalls of a chassis configured to structurally support at least one circuit card); receiving the at least one circuit card in a cavity of the chassis; causing the bellows to transition from the collapsed states to at least partially expanded states by allowing the first fluid to enter the bellows; applying a pushing force by each said bellow to an intermediary structure disposed between the bellow and the circuit card; and creating a seal between the intermediary structure and the circuit card when the bellow is in the at least partially expanded state.
A communications system may include a first communications device having a first memory storing a crypto-variable (CV) array having N number of crypto-variables (CVs). A first processor cooperates with the first memory and selects M number of CVs from the CV array, the M number having identifiers associated therewith, generates a key using a cryptographic operation and based upon the selected M number of CVs, generates an encrypted message using the key, and transmits the identifiers of the selected M number of CVs and the encrypted message. A second communications device includes a second memory and the CV array stored therein. A second processor cooperates with the second memory and receives the identifiers for the selected M number of CVs and the encrypted message, generates the key using the cryptographic operation based upon the M number of CVs, and decrypts the encrypted message based upon the key.
An electronic assembly may include a chassis, and electronic modules mounted within the chassis. Each electronic module may include a printed circuit substrate, heat-generating electronic components mounted on the printed circuit substrate, and a heat sink body mounted to the printed circuit substrate and having a plurality of heat pipe receiving passageways extending between opposing side edges and overlying corresponding heat-generating components. A respective elongate, passive, heat pipe may extend within each heat pipe receiving passageway and be removably fastened to at least one end to the heat sink body for enhanced conductive heat transport.
F21V 29/00 - Protecting lighting devices from thermal damageCooling or heating arrangements specially adapted for lighting devices or systems
F28D 15/00 - Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls
F28D 15/02 - Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls in which the medium condenses and evaporates, e.g. heat-pipes
F28D 15/04 - Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls in which the medium condenses and evaporates, e.g. heat-pipes with tubes having a capillary structure
F28F 1/02 - Tubular elements of cross-section which is non-circular
F28F 3/12 - Elements constructed in the shape of a hollow panel, e.g. with channels
H01L 23/00 - Details of semiconductor or other solid state devices
H01L 23/34 - Arrangements for cooling, heating, ventilating or temperature compensation
H01L 23/367 - Cooling facilitated by shape of device
H01L 23/40 - Mountings or securing means for detachable cooling or heating arrangements
H01L 23/427 - Cooling by change of state, e.g. use of heat pipes
H01L 23/467 - Arrangements for cooling, heating, ventilating or temperature compensation involving the transfer of heat by flowing fluids by flowing gases, e.g. air
H05K 1/18 - Printed circuits structurally associated with non-printed electric components
H05K 3/22 - Secondary treatment of printed circuits
H05K 7/00 - Constructional details common to different types of electric apparatus
H05K 7/20 - Modifications to facilitate cooling, ventilating, or heating
70.
Multi-level multiferroic memory device and related methods
An electronic device may include a first electrode, a first magnetostrictive layer coupled to the first electrode, a plurality of alternating ferromagnetic and insulating layers stacked above the first magnetostrictive layer, a second electrode electrically coupled to an intermediate ferromagnetic layer in the stack of ferromagnetic and insulating layers, a second magnetostrictive layer above the stack of ferromagnetic and insulating layers, and a third electrode electrically coupled to the second magnetostrictive layer. At least one ferromagnetic layer below the intermediate ferromagnetic layer may be switchable between different polarization states responsive to a first voltage applied across the first and second electrodes, and at least one ferromagnetic layer above the intermediate ferromagnetic layer may be switchable between different polarization states responsive to a second voltage applied across the second and third electrodes.
An electronic device may include a first electrode, a first magnetostrictive layer electrically coupled to the first electrode, a first ferroelectric layer above the first ferromagnetic layer, and a ferromagnetic layer above the first ferroelectric layer. The electronic device may further include a second electrode electrically coupled to the ferromagnetic layer, a second ferroelectric layer above the ferromagnetic layer, a second magnetostrictive layer above the second ferroelectric layer, and a third electrode electrically coupled to the second magnetostrictive layer. The first ferroelectric layer may be switchable between different polarization states responsive to a first voltage applied across the first and second electrodes, and the second ferroelectric layer may be switchable between different polarization states responsive to a second voltage applied across the second and third electrodes.
H01L 43/04 - Devices using galvano-magnetic or similar magnetic effects; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof - Details of Hall-effect devices
H01L 27/22 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate using similar magnetic field effects
H01L 43/14 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof for Hall-effect devices
72.
Multiferroic memory with piezoelectric layers and related methods
An electronic device may include a first electrode, a first piezoelectric layer electrically coupled to the first electrode, a first magnetostrictive layer above the first piezoelectric layer, a first tunnel barrier layer above the first magnetostrictive layer, and a ferromagnetic layer above the first ferroelectric layer. The electronic device may further include a second electrode electrically coupled to the ferromagnetic layer a second tunnel barrier layer above the ferromagnetic layer, a second magnetostrictive layer above the second tunnel barrier layer, a second piezoelectric layer above the second magnetostrictive layer, and a third electrode electrically coupled to the second piezoelectric layer. The first piezoelectric layer may be strained responsive to voltage applied across the first and second electrodes, and the second piezoelectric layer may be strained responsive to voltage applied across the second and third electrodes.
H10B 61/00 - Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
G11C 11/14 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using thin-film elements
G11C 11/15 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
G11C 11/56 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
H10N 30/00 - Piezoelectric or electrostrictive devices
H10N 30/05 - Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
H10N 30/85 - Piezoelectric or electrostrictive active materials
H10N 30/87 - Electrodes or interconnections, e.g. leads or terminals
A sensor receiver may include a Rydberg cell configured to be exposed to a radio frequency (RF) signal having an RF data rate, and a probe source configured to generate a plurality of spaced apart pulsed probe beams within the Rydberg cell. Each pulse may have a temporal pulse width so that the RF data rate is greater than the reciprocal of the temporal pulse width. At least one excitation source may be coupled to the Rydberg cell. A detector may be positioned downstream from the Rydberg cell. The sensor receiver may be used in a RADAR system.
G01S 7/03 - Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
H01Q 19/00 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
A module is retained in a slot of an electronics chassis. A clearance space is provided for receiving the module in a slot of the electronics chassis by controlling an internal pressure of a bellows. The bellows forms a part of a retainer that is disposed on an elongated rail extending along a length of the slot. The bellows defines an internal bellows capsule which contains a fluid. Once the module has been inserted in the slot, the module is secured with the retainer by further controlling the internal pressure of the bellows to exert a force on the module.
An interference cancellation system may include a radio frequency (RF) transmitter configured to generate an RF interference signal, and an RF receiver configured to receive an RF input signal that includes a signal of interest component and an RF interference signal component from the RF transmitter. The system may also include an electro-optical (EO) modulator configured to apply an interference cancellation phase shift to the RF interference signal, an optical-to-electrical (OE) converter, and an optical path between the EO modulator and OE converter. The system may also include an RF dispersive delay filter connected to the OE converter, and an RF coupler connected to the RF dispersive delay filter and the RF receiver to subtract the RF interference signal component from the RF input signal thereby producing the signal of interest component.
An optical system for use with a vacuum chamber may include a target to be positioned within the vacuum chamber, a laser source, and an optical assembly to be positioned within the vacuum chamber between the target and the laser source. The optical assembly may include a housing, a frame, a lens carried by the frame, and spiral flexures each having a respective proximal end coupled to the frame. In addition, the optical assembly may include a plurality of flexure actuators, where each flexure actuator is coupled between the housing and a distal end of a respective spiral flexure.
A communications system may include end-user devices (EUDs), a communications network, and a message processor. A message parser determines, from a received message, a message originator EUD having an associated originator message channel format, and at least one intended message recipient EUD with an associated recipient message channel format. A message channel database includes respective different message channel formats for different EUDs. A message recaster cooperates with the message parser and message channel database and transmits at least one recast message based upon the received message, which may include a corresponding recipient message channel format with a corresponding Internet Protocol (IP) address for the at least one intended recipient EUD.
A quantum communications system may include a transmitter node, a receiver node, and a quantum communications channel coupling the transmitter node and receiver node. The transmitter node may include a pulse transmitter, a pulse divider downstream from the pulse transmitter, and at least one first waveplate upstream from the pulse divider and configured to alter a polarization state of pulses travelling therethrough. The receiver node may include at least one second waveplate being a conjugate of the at least one first waveplate, a pulse recombiner upstream from the at least one second waveplate, and a pulse receiver downstream from the at least one second waveplate.
A quantum communications system may include a transmitter node, a receiver node, and a quantum communications channel coupling the transmitter node and receiver node. The transmitter node may include a pulse transmitter and pulse divider downstream therefrom. The receiver node may include a pulse recombiner and a pulse receiver downstream therefrom.
A satellite communication system includes satellite nodes moving in respective known orbits, and a controller configured to determine routing neighborhoods for each satellite node based upon the known orbits, each routing neighborhood comprising a group of adjacent satellite nodes; and assign a respective primary neighborhood egress node (NEN) from among the plurality of satellite nodes for each routing neighborhood. A given satellite node of a given satellite node routing neighborhood may be configured to reroute a failed path from a source satellite node to a destination satellite node through the given satellite neighborhood using a secondary NEN instead of a respective primary NEN.
An electronic device may include a circuit board, a heat generating component carried by the circuit board, a heat sink body, and a heat transfer assembly between the heat generating component and the heat sink body. The heat transfer assembly may include a flexible, heat conductive layer having a first portion in thermal contact with the heat generating component and a second portion in thermal contact with the heat sink body. The first and second portions are thermally coupled, and a compressible layer is between the first and second portions of the flexible, heat conductive layer.
Systems and methods for applying solder to a pin. The methods comprising: disposing a given amount of solder on a non-wettable surface of a planar substrate; aligning the pin with the solder disposed on the non-wettable surface of the planar substrate; inserting the pin in the solder; and/or performing a reflow process to cause the solder to transfer from the planar substrate to the pin.
H01L 21/48 - Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups or
H01L 23/373 - Cooling facilitated by selection of materials for the device
H05K 3/34 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
Systems and methods for operating a circuit. The methods comprise: using a first thermal responsive device to connect a first power source between first and second terminals to which an external load can be connected to the circuit; using a second thermal responsive device to cause a thermal unresponsive device to be in an open circuit condition; and performing operations responsive to a temperature of a surrounding environment exceeding a given temperature value. The operations include: disconnecting the first power source from at least the first terminal by transitioning the first thermal responsive device from a closed state to an open state; and connecting a second power source between the first and second terminals by transitioning the thermal unresponsive device from the open circuit condition to a closed circuit condition using the second thermal responsive device.
H02J 9/06 - Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
Deployable reflector system includes a support structure and a reflector surface secured to the support structure. The support structure transition from a compact stowed configuration to a larger deployed configuration to deploy the reflector surface. The reflector surface is comprised of a carbon nanotube (CNT) sheet. The sheet is intricately folded in accordance with a predetermined folding pattern to define a compact folded state. This predetermined folding pattern is configured to permit automatic extension of the CNT sheet from a compact folded state to a fully unfolded state. The unfolding operation occurs when a tension force is applied to at least a portion of the peripheral edge of the CNT sheet. In some scenarios, the support structure can comprise a circumferential hoop.
An optical assembly may include a base having a body defining a base mating feature surface. Optical modules are arranged in side-by-side relation on the base and in optical communication with each other. Each optical module includes a housing that is commonly-shaped with other housings. Each housing has a bottom wall defining a module mating feature surface coupled with a respective area of the base mating feature surface and at least one sidewall with an optical communication opening aligned with the at least one optical communication opening of an adjacent housing. A respective optical device is within each housing.
G02B 6/42 - Coupling light guides with opto-electronic elements
G02B 6/12 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
G02B 6/13 - Integrated optical circuits characterised by the manufacturing method
86.
Optical fiber sensing system having glass distributed diamond particles with nitrogen-vacancy (NV) centers and related methods
An optical fiber distributed sensing system may include an optical fiber for distributed sensing. The optical fiber may include a core including glass and diamond particles with nitrogen-vacancy (NV) centers distributed within the glass. The optical fiber may also include at least one glass layer surrounding the core. An optical source may be coupled to the optical fiber and operable from an end thereof. An optical detector may be coupled to the optical fiber to detect fluorescence therefrom.
A communications device may include an RF device, and an antenna. The antenna may include a conductive ground plane, an elongate support extending from the conductive ground plane, and a helically wound conductive strip carried by the elongate support. The communications device may have a coaxial cable coupling the RF device and the antenna. The coaxial cable may include an inner conductor and an outer conductor surrounding the inner conductor. The outer conductor may be coupled to the conductive ground plane and the inner conductor may extend through the conductive ground plane and be coupled to a proximal end of the helically wound conductive strip.
An optical device may include a substrate and vertical-cavity surface-emitting lasers (VCSELs) on the substrate. The optical device may also include a coupling layer over the substrate and that includes optical guides aligned with the VCSELs to guide outputs thereof from a vertical path direction to a lateral path direction. The optical device also includes controllable delay elements, each controllable delay element associated with a respective optical guide, and a controller coupled to the controllable delay elements.
A spectrographic system includes a space-borne spectrometer in communication with a ground-based processor. The space-borne spectrometer may include an interferometer, a detector array downstream from the interferometer, and a spectrometer controller configured to cooperate with the detector array to collect Fourier Transform Spectral (FTS) data, generate Principle Component Analysis (PCA) scores from the collected FTS data, generate an approximate interferogram based upon the PCA scores and the collected FTS data, generate residuals based upon the approximate interferogram, and generate compressed FTS data based upon the PCA scores and residuals to be sent to the ground-based processor.
Systems and methods for making an antenna reflector. The methods comprise: obtaining a Carbon Nano-Tube (“CNT”) material; cutting the CNT material into a plurality of wedge shaped pieces; and bonding together the wedge shaped pieces using a resin film adhesive to form the antenna reflector with a three dimensional contoured surface.
H01Q 15/16 - Reflecting surfacesEquivalent structures curved in two dimensions, e.g. paraboloidal
B29C 65/48 - Joining of preformed partsApparatus therefor using adhesives
B29C 70/44 - Shaping or impregnating by compression for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
Systems and methods for providing a fin structure. The fin structure may be employed in a heat exchanger. The fin structure comprises: a support structure; and a plurality of fins disposed on the support structure via additive manufacturing so as to facilitate a change in direction of a fluid flowing through the fin structure. The fins comprise first fins that have centers arranged in accordance with a phyllotaxis or Fibonacci pattern.
F28F 13/06 - Arrangements for modifying heat transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
F28F 1/02 - Tubular elements of cross-section which is non-circular
F28F 1/12 - Tubular elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
92.
Underwater device with rotary switch and related switch assembly and method
An underwater device may include a waterproof housing defining a dry cavity and having a nonferrous switch interface wall. The underwater device may include a rotary switch within the dry cavity and including a switch body, and a switch shaft extending outwardly from the switch body. The underwater device may include a first magnetic body within the dry cavity and coupled between the switch shaft and the nonferrous switch interface wall, and a second magnetic body external from the waterproof housing and adjacent the nonferrous switch interface wall in alignment with the first magnetic body so that rotation of the second magnetic body rotates the switch shaft. Each of the first magnetic body and the second magnetic body may include a permanent magnet.
H01H 36/00 - Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
H01H 9/04 - Dustproof, splashproof, drip-proof, waterproof, or flameproof casings
93.
Sensor receiver having Rydberg cell and spaced apart pulsed probe beams and associated methods
A sensor receiver includes a Rydberg cell configured to be exposed to a radio frequency (RF) signal, and a probe source configured to generate a plurality of spaced apart pulsed probe beams within the Rydberg cell. The pulsed probe beams are offset in time from one another. A detector is positioned downstream from the Rydberg cell.
A sensor receiver may include a Rydberg cell configured to be exposed to a radio frequency (RF) signal, and a probe source configured to generate a plurality of spaced apart pulsed probe beams within the Rydberg cell. The pulsed probe beams may be offset in time from one another. A plurality of excitation sources may be coupled to the Rydberg cell. A detector may be positioned downstream from the Rydberg cell.
Systems and methods for operating a quantum network system. The methods comprise, by a network node: generating optical clock pulses and photons using the optical clock pulses; generating a combined signal by combining the optical clock pulses with at least some of the photons such that a consistent temporal offset exits between the optical clock pulses and the first photons and/or a wave function of each photon at least partially overlaps an envelope of a respective one of the optical clock pulses; and transmitting the combined signal over a first quantum channel in which the optical clock pulses co-propagate with the photons.
A spectrographic system includes a space-borne spectrometer in communication with a ground-based processor. The space-borne spectrometer may include an interferometer, a detector array downstream from the interferometer, and a spectrometer controller configured to cooperate with the detector array to collect Fourier Transform Spectral (FTS) data, generate Principle Component Analysis (PCA) scores from the collected FTS data, generate an approximate interferogram based upon the PCA scores and the collected FTS data, generate residuals based upon the approximate interferogram, and generate compressed FTS data based upon the PCA scores and residuals to be sent to the ground-based processor.
G01N 21/27 - ColourSpectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection
97.
Optical system with at least one aligned optical cell and associated method
The optical system includes a base having a groove and an adjacent slot therein. The system also includes at least one optical cell slidably alignable along the groove, and at least one clamp comprising a lower end and an upper end. The lower end is slidably alignable along the slot and is secured at a set location so that the upper end secures the at least one optical cell along the groove. The slot may extend parallel to the groove. The clamp may include at least one preloaded fastener arrangement securing the lower end of the clamp to the base. The preloaded fastener may include a bolt, a spring biasing the bolt, and a threaded backing plate within the slot and receiving the bolt.
Systems (100) and methods (600) for providing a product with a radiation mitigation feature. The methods comprise: obtaining a composite base layer formed of a fiber-reinforced material; and performing a deposition process to dispose a first coating layer on the composite base layer so as to form the product with a radiation barrier, the first coating layer comprising 35% by mass or less of a metal constituent, at least 65% by mass of a germanium constituent, a zero or substantially zero coating stress, and/or an overall thickness between 2 microns and 8 microns.
G21F 1/08 - MetalsAlloysCermets, i.e. sintered mixtures of ceramics and metals
G02B 1/14 - Protective coatings, e.g. hard coatings
G02B 23/02 - Telescopes, e.g. binocularsPeriscopesInstruments for viewing the inside of hollow bodiesViewfindersOptical aiming or sighting devices involving prisms or mirrors
G21F 3/00 - Shielding characterised by its physical form, e.g. granules, or shape of the material
99.
Docking system including first and second optical transceivers for docking and related methods
A docking system may include a first device and a second device moveable relative to the first device. The first device may include a docking station, a first optical transceiver, and a first controller configured to operate the first optical transceiver to receive an optical beacon signal, and generate and transmit an optical guidance data signal based on the optical beacon signal. The second device may also include a propulsion system, and a second optical transceiver configured to transmit the optical beacon signal toward the first optical transceiver and receive the optical guidance data signal from the first optical transceiver. The second device may also include a second controller configured to operate the propulsion system based upon the optical guidance data signal to dock the second device to the docking station of the first device.
An electronic device may include a circuit board, a heat generating component carried by the circuit board, a heat transfer rail extending along an edge of circuit board and coupled to the heat generating component, a housing covering the circuit board, and a heat transfer clamp between the heat transfer rail and the housing. The heat transfer clamp includes a flexible, heat conductive layer having a first portion in thermal contact with the heat transfer rail and a second portion in thermal contact with the housing. The first and second portions are thermally coupled, and a clamp and a compressible layer thereon extends between the first and second portions of the flexible, heat conductive layer.
H05K 7/14 - Mounting supporting structure in casing or on frame or rack
F16B 2/04 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening internal, i.e. with spreading action
H05K 7/20 - Modifications to facilitate cooling, ventilating, or heating