A driver pulley assembly for a continuously variable transmission (CVT) includes a roller weight guide, having an inner and outer periphery, adapted to be mounted on the main shaft of the CVT. A plurality of ramp windows extend radially along the roller weight guide. A pair of guide rails extend along opposite edges of each ramp window. A plurality of roller weights, mounted on the pair of guide rails, is adapted to move along the pair of guide rails in a radial direction of the roller weight guide. A ramp structure, coinciding with the ramp window, extends in the radial direction of the roller weight guide and abuts the plurality of roller weights. The roller weighs are adapted to move radially outwards along the ramp structure with increasing rotational speed of the roller weight guide. The ramp structures have ramp profiles. CVT systems and vehicles including the driver pulley assembly are also included.
F16H 9/16 - Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
F16H 9/18 - Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable
F16H 55/56 - Pulleys or friction discs of adjustable construction of which the bearing parts are relatively axially adjustable
B62D 11/10 - Steering non-deflectable wheelsSteering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source using gearings with differential power outputs on opposite sides, e.g. twin- differential or epicyclic gears
B62M 27/02 - Propulsion devices for sledges or the like power driven
A suspension assembly for a personal tracked vehicle comprises a first swing arm pivotally connectable to a frame of the vehicle. The first swing arm has a first end and a second end. A second swing arm is pivotally connectable to the first swing arm. The second swing arm has a first end and a second end. At least one spring member is connected to the first and second swing arms. At least one first wheel is rotatably connected to the first end of the first swing arm. At least one second wheel is rotatably connected to the first end of the second swing arm. The at least one first and second wheels are adapted to be in contact with the same track of the vehicle. The first and second wheels are one of an idler wheel and a drive wheel. Suspensions and personal tracked vehicles are also presented.
The present invention is an improved personal tracked vehicle consisting of a platform pivotally mounted on top of a housing, the platform having a right and left side and a central axis. The platform is pivotally movable between a first position wherein the right side of the platform is below the left side of the platform and a second position wherein the left side of the platform is below the right side of the platform. The platform has a forward portion, a rearward portion and middle portion between the two, the middle portion being arched upwardly. The vehicle further includes a pair of parallel right and left tracks mounted to the housing below the platform, the right track being coupled to a right track transmission and the left track being coupled to a left track transmission, the right and left track transmissions both being coupled to a motor for driving the transmissions. The right and left track transmissions are operatively coupled to the platform such that when the platform is pivoted towards its first position, the left track is driven faster and the right track is driven slower, and when the platform is pivoted towards its second position, the right track is driven faster and the left track is driven slower, the platform being biased towards a central position wherein the left and right drives operate at the same speed. The motor of the vehicle is mounted to the housing below the middle portion of the platform and between the tracks.