Devices and systems for producing rotational actuation are described. Hydraulic and pneumatic actuators can produce and control rotational motion. A rotary joint may be configured to allow parallel coupling of multiple actuators, and thus increase the range of rotation of the actuators when considered collectively. The actuators may include pistons and piston rods having torus shapes. Methods of manufacturing rotary joints are also described.
F15B 15/12 - Fluid-actuated devices for displacing a member from one position to anotherGearing associated therewith characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type
Robotic grippers and robotic gripping systems are disclosed. A robotic gripper includes one or more gripping members, one or more tactile sensors on or in the one or more gripping members, and one or more processors. The one or more tactile sensors are configured to take geographic measurements of an object gripped by the one or more gripping members. The one or more processors are configured to create a numeric model of at least a portion of a surface of the object gripped by the one or more gripping members using the geographic measurements from the one or more tactile sensors. The one or more processors are also configured to adjust a location of the object gripped by the one or more gripping members by controlling the one or more gripping members based on the numeric model of the at least the portion of the surface of the object.
G05B 19/18 - Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
G05D 1/02 - Control of position or course in two dimensions
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
G01B 21/20 - Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
B25J 13/08 - Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
A dual directional actuator may be linked to another actuator, device, object, or joint (e.g., a robotic limb or the like). A linkage mechanism may securely couple the actuator to the other actuator, device, object, or joint. Additionally, a piston axle bridge may couple the piston of the actuator to an internal or external axle. The dual directional actuator may be coupled to manifolds with integrated tee fittings to eliminate hoses external to a joint comprising one or more dual directional actuators.
F15B 15/12 - Fluid-actuated devices for displacing a member from one position to anotherGearing associated therewith characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type
F01C 1/063 - Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them
F01C 1/07 - Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them having crankshaft-and-connecting-rod type drive
F01C 9/00 - Oscillating-piston machines or engines
F02B 53/00 - Internal-combustion aspects of rotary-piston or oscillating-piston engines
F02B 53/08 - Charging, e.g. by means of rotary-piston pump
F15B 15/00 - Fluid-actuated devices for displacing a member from one position to anotherGearing associated therewith
A displacement measuring cell may be used to measure linear and/or angular displacement. The displacement measuring cell may include movable and stationary electrodes in a conductive fluid. Electrical property measurements may be used to determine how far the movable electrode has moved relative to the stationary electrode. The displacement measuring cell may include pistons and/or flexible walls. The displacement measuring cell may be used in a touch-sensitive robotic gripper. The touch-sensitive robotic gripper may include a plurality of displacement measuring cells mechanically in series and/or parallel. The touch-sensitive robotic gripper may be include a processor and/or memory configured to identify objects based on displacement measurements and/or other measurements. The processor may determine how to manipulate the object based on its identity.
B25J 15/10 - Gripping heads having finger members with three or more finger members
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
6.
DEVICES AND SYSTEMS FOR PRODUCING ROTATIONAL ACTUATION
Devices and systems for producing rotational actuation are described. More specifically, hydraulic and pneumatic actuators that can produce and control rotational or joint-like motion are described. An actuator may be configured to allow parallel coupling of multiple actuators, and thus increase the range of rotation of the actuators when considered collectively.
F15B 15/12 - Fluid-actuated devices for displacing a member from one position to anotherGearing associated therewith characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type
7.
Devices and systems for producing rotational actuation
Devices and systems for producing rotational actuation are described. More specifically, hydraulic and pneumatic actuators that can produce and control rotational or joint-like motion are described. An actuator may be configured to allow parallel coupling of multiple actuators, and thus increase the range of rotation of the actuators when considered collectively.
F15B 15/12 - Fluid-actuated devices for displacing a member from one position to anotherGearing associated therewith characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type
B25J 9/14 - Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
B25J 9/04 - Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian co-ordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical co-ordinate type or polar co-ordinate type
A displacement measuring cell may be used to measure linear and/or angular displacement. The displacement measuring cell may include movable and stationary electrodes in a conductive fluid. Electrical property measurements may be used to determine how far the movable electrode has moved relative to the stationary electrode. The displacement measuring cell may include pistons and/or flexible walls. The displacement measuring cell may be used in a touch-sensitive robotic gripper. The touch-sensitive robotic gripper may include a plurality of displacement measuring cells mechanically in series and/or parallel. The touch-sensitive robotic gripper may be include a processor and/or memory configured to identify objects based on displacement measurements and/or other measurements. The processor may determine how to manipulate the object based on its identity.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G01B 21/20 - Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
G05D 1/02 - Control of position or course in two dimensions
G01L 1/16 - Measuring force or stress, in general using properties of piezoelectric devices
B25J 13/08 - Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
A rotational hydraulic joint may include an extension chamber and a retraction chamber. Each chamber may include an end cap and a piston that moves relative to the end cap. One or more ports may add and remove fluid from the chamber. The rotational hydraulic joint may rotate in a cyclical direction when fluid is added to the extension chamber and in a countercyclical direction when fluid is added to the retraction chamber. The chambers may each include a torus-shaped cavity. Bladders may prevent fluid from leaking out of the rotational hydraulic joint. Stationary and movable electrodes may be coupled to the end cap and piston respectively. A plurality of rotational hydraulic joints may be combined to create a compound joint.
G05B 21/00 - Systems involving sampling of the variable controlled
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
F04B 9/10 - Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
G01B 7/00 - Measuring arrangements characterised by the use of electric or magnetic techniques
B25J 19/00 - Accessories fitted to manipulators, e.g. for monitoring, for viewingSafety devices combined with or specially adapted for use in connection with manipulators
A displacement measuring cell may be used to measure linear and/or angular displacement. The displacement measuring cell may include movable and stationary electrodes in a conductive fluid. Electrical property measurements may be used to determine how far the movable electrode has moved relative to the stationary electrode. The displacement measuring cell may include pistons and/or flexible walls. The displacement measuring cell may be used in a touch-sensitive robotic gripper. The touch-sensitive robotic gripper may include a plurality of displacement measuring cells mechanically in series and/or parallel. The touch-sensitive robotic gripper may be include a processor and/or memory configured to identify objects based on displacement measurements and/or other measurements. The processor may determine how to manipulate the object based on its identity.
F04B 9/10 - Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
G01B 7/00 - Measuring arrangements characterised by the use of electric or magnetic techniques
B25J 19/00 - Accessories fitted to manipulators, e.g. for monitoring, for viewingSafety devices combined with or specially adapted for use in connection with manipulators
A displacement measuring cell may be used to measure linear and/or angular displacement. The displacement measuring cell may include movable and stationary electrodes in a conductive fluid. Electrical property measurements may be used to determine how far the movable electrode has moved relative to the stationary electrode. The displacement measuring cell may include pistons and/or flexible walls. The displacement measuring cell may be used in a touch-sensitive robotic gripper. The touch-sensitive robotic gripper may include a plurality of displacement measuring cells mechanically in series and/or parallel. The touch-sensitive robotic gripper may be include a processor and/or memory configured to identify objects based on displacement measurements and/or other measurements. The processor may determine how to manipulate the object based on its identity.
A robot skeletal component may be configured to support and power a robot. The skeletal component may include an elongated inner core and a battery coupled to and substantially circumscribing the inner core. The robot skeletal component may be configured to connect to a joint via a quick release flange. A casing may enclose the battery. The casing may be configured to seal punctures. The robot skeletal component may include a heating element to heat the battery. The robot skeletal component may be configured to transport fluid, data, and/or electrical power. The inner core may include a plurality of surface elements to transfer data and/or electrical power. The inner core may include a hollow interior, and the hollow interior may include a plurality of non-interconnected chambers configured to transfer fluid. The inner core may include insulators to insulate the inner core from the surface elements and/or the fluid.
F04B 9/10 - Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
G01B 7/00 - Measuring arrangements characterised by the use of electric or magnetic techniques
B25J 19/00 - Accessories fitted to manipulators, e.g. for monitoring, for viewingSafety devices combined with or specially adapted for use in connection with manipulators
37 - Construction and mining; installation and repair services
42 - Scientific, technological and industrial services, research and design
Goods & Services
(1) Design, sale, installation and maintenance of heating, ventilation, air conditioning, refrigeration, and plumbing systems.
(2) Design, sale, installation of geothermal climate control systems, namely drilling and excavation, placement of geothermal fluid loops, placement of header distribution and valve assemblies, installation of associated heat pumps, control apparatuses, floor heating loops and air distribution systems.