Data sets associated with a common PCB are correlated by (a) providing a first data set from a first machine including: first position information and first characteristic information about characteristic target properties of a product-characteristic structure of the PCB at a plurality of positions on the printed circuit board; (b) providing a second data set from a second machine, including: second position information and second characteristic information about characteristic target properties of the product-characteristic structure of the PCB at the plurality of positions on the PCB; (c) geometrically superimposing the first position information on the second position information; and (d) repositioning the first position information and/or the second position information such that a totality of the distances between two mutually associated pieces of position information, i.e. first position information and associated second position information, from one and the same location on the PCB is reduced.
42 - Scientific, technological and industrial services, research and design
Goods & Services
Providing online, non-downloadable software for monitoring and controlling apparatus for manufacturing electronics boards and components; providing online, non-downloadable software for monitoring and controlling electronic and optical sensors; providing online, non-downloadable data-processing software; providing online, non-downloadable software for enterprise technology for operating an electronic storefront and maintaining a customer product database; providing online, non-downloadable augmented reality software for designing, displaying, and interacting with manufacturing machines; providing online, non-downloadable communication software for enabling transfer of information and requests between human users, manufacturing machinery and servers; providing online, non-downloadable software for manufacturing technology for monitoring and controlling factory processes; providing online, non-downloadable computer-aided manufacturing (CAM) software for general use; providing online, non-downloadable software for predictive maintenance of manufacturing machines; providing online, non-downloadable software for error diagnostics and corrections; providing online, non-downloadable software for controlling industrial processes; providing online, non-downloadable software for network and device security; providing online, non-downloadable software for computer-aided software development; cloud computing featuring software for deploying virtual machines to a cloud computing platform, managing virtual machines on a cloud computing platform integration, networking of machinery for production of electronics boards and components, and enabling transfer of information and requests between human users, manufacturing machinery and servers; providing online, non-downloadable software for the maintenance and operation of computer systems; providing online, non-downloadable software for use in the manufacture and processing of electronic assemblies, electronic components and semiconductor wafers; providing online, non-downloadable software for managing mobile devices; providing online, non-downloadable software for searching and retrieving information
3.
Apparatus and method of determining a bonding position of a die
The invention provides an apparatus for determining a bonding position of a die. The apparatus includes a bond head for picking up and bonding the die. The apparatus further includes a plurality of cameras positioned and configured for capturing at least a first image including a first side surface of the die, a second image including a second side surface of the die and a third image including the first and second side surfaces of the die. Further, the invention provides a method of determining a bonding position of a die. The method captures at least a first image including a first side surface of the die, a second image including a second side surface of the die and a third image including the first and second side surfaces of the die. The method further determines a bonding position of the die based on the captured images.
An atomization mechanism for cooling a bond head comprises an atomization module and a conduit. In use, the atomization module receives gas and liquid from a gas supply and a liquid supply respectively to form an atomized spray and the conduit conveys the atomized spray from the atomization module to a spray inlet located at the bond head to receive the atomized spray into the bond head for cooling the bond head.
B23K 3/00 - Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
H01L 23/00 - Details of semiconductor or other solid state devices
B05B 12/08 - Arrangements for controlling deliveryArrangements for controlling the spray area responsive to condition of liquid or other fluent material discharged, of ambient medium or of target
B05B 7/04 - Spray pistolsApparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
A method for aligning probe pins with respect to positions of electronic devices comprises conducting contact stamping on a first electronic device with the probe pins to form first probe marks on lead pads of the first electronic device, capturing an image of the first electronic device, determining positions of the first probe marks on the first electronic device using the captured image, calculating an offset using the positions of the first probe marks, adjusting relative positions between a subsequent plurality of electronic devices and the probe pins using the offset, and contacting lead pads of the subsequent plurality of electronic devices with the probe pins for testing said electronic devices. The first probe marks are configured to have greater visibility as compared with second probe marks formed when contacting the lead pads of the subsequent plurality of electronic devices with the probe pins, so as to improve the accuracy of the offset calculated.
A die attachment apparatus for attaching a semiconductor die onto a substrate having a metallic surface comprises a material dispensing station for dispensing a bonding material onto the substrate and a die attachment station for placing the semiconductor die onto the bonding material which has been dispensed onto the substrate. An activating gas generator positioned before the die attachment station introduces activated forming gas onto the substrate in order to reduce oxides on the substrate.
Real-time alignment of substrates is conducted by way of placing a first substrate together with a second substrate located over the first substrate in a fixed relative position onto a first substrate holder. The first substrate holder is operative to support the first substrate. A second substrate holder is operative to contact and control the position of the second substrate relative to the first substrate. A pattern recognition system is operative to view reference marks on the first and second substrates for determining their relative alignment, and a positioning mechanism coupled to the first substrate holder and/or the second substrate holder will align the first substrate relative to the second substrate based on their relative alignment as determined by the pattern recognition system. Thereafter, the substrates are fully laminated to secure them to each other.
An array of semiconductor components, comprising a first plurality of semiconductor components and a second plurality of semiconductor components held on a carrier, is bonded onto one or more substrates. The first plurality of semiconductor components is first located for pick-up by a transfer device, and each semiconductor component comprised in the first plurality of semiconductor components is picked up with the transfer device and is bonded onto a respective bonding position on the one or more substrates. After the first plurality of semiconductor components have been picked up and bonded, the carrier is rotated and the second plurality of semiconductor components is located for pick-up by the transfer device. Thereafter, each semiconductor component comprised in the second plurality of semiconductor components is picked up with the transfer device and is bonded onto a respective bonding position on the one or more substrates.
A bonding apparatus for conducting bonding on substrates comprises a first substrate holding device for clamping a first substrate during bonding and a second substrate holding device for clamping a second substrate during bonding. Each substrate holding device is operative to move sequentially between its respective onloading position for receiving substrates, bonding position whereat substrates are bonded and offloading position whereat bonded substrates are removed from the substrate holding device. A first actuator is operative to drive the first substrate holding device along a first feeding path from its onloading position to its bonding position and from its offloading position to its onloading position along a first return path. A second actuator is operative to drive the second substrate holding device along a second feeding path from its onloading position to its bonding position and from its offloading position to its onloading position along a second return path.
B23K 37/04 - Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass for holding or positioning work
A method for inspecting a substrate having intrinsic heterogeneous patterns for the presence of cracks comprises the steps of providing an optical device and front-side lighting on a first side of the substrate and providing near-infrared lighting on a second side of the substrate opposite to the first side. The near-infrared lighting is operable to penetrate the substrate so as to be detectable by the optical device through the substrate. One or more images are obtained by illuminating the substrate with the front-side lighting and/or the near-infrared lighting from the second side. The one or more images are thereafter processed to distinguish between the heterogeneous patterns on the substrate and any cracks present on the substrate.
A linear switched reluctance motor comprises a movable coil bracket including first and second coil assemblies. Each of the first and second coil assemblies further comprises a plurality of coils separately wound around a plurality of motor coil cores, each of the coils being configured to receive a sinusoidal current at a different phase from other coils comprised in the same coil assembly. Tooth members of a stator track are located adjacent to the motor coil cores such that a magnetic flux path is created which passes through the motor coil core, the stator track and an air gap between the motor coil core and the stator track. A multiple-phase motor driver electrically connected to the first and second coil assemblies generates symmetric multiple-phase sinusoidal currents for driving the motor.
A wire is bonded to a target surface using a rotary bond head by positioning a wedge bonding tool of the bond head over the target surface. A camera system is tilted at an oblique angle relative to an arrangement of the bond head to conduct pattern recognition of bonding points on the target surface for determining actual positions of the bonding points and an orientation between the actual positions of first and second bonding points. The bond head is moved to the actual position of the first bonding point and rotated to the determined orientation. Thereafter, the wire is bonded to the target surface at the first bonding point with the bond head.
B23K 31/02 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to soldering or welding
14.
Integrated connector assembly for a rotary apparatus
A rotary apparatus comprises a rotary bobbin, a processing component fixedly attached to the bobbin and connectors fixedly connected to the processing component. At least one helical groove is located along the bobbin wherein the connectors are housed. A motor coupled to the processing component is operative to rotate the processing component together with the bobbin in two opposite rotary directions.
B65H 75/38 - Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
B65H 23/04 - Registering, tensioning, smoothing, or guiding webs longitudinally
A laser processing apparatus for cutting substrates comprises a laser head for generating a laser beam and first and second work holders on which substrates are mountable. A diverter positioned along a path of the laser beam is operative to selectively direct the laser beam towards a first substrate mounted on the first work holder to cut the first substrate, or towards a second substrate mounted on the second work holder to cut the second substrate, so that contemporaneous operations may be conducted on one substrate while the other substrate is being cut.
A transfer assembly for transferring first and second groups of electronic components simultaneously comprises a holding plate containing first and second sets of suction holes. The respective first and second sets of suction holes are operative to hold the first and second groups of electronic components respectively against the holding plate during transfer of the electronic components. A first vacuum chamber located next to the holding plate is connected only to the first set of suction holes. A vacuum compartment located within the first vacuum chamber encloses a second vacuum chamber. The vacuum compartment includes a sealing sheet in contact with the holding plate which has vacuum holes connecting the second vacuum chamber to the second set of suction holes. First and second vacuum sources are provided for applying vacuum suction forces separately in the first and second vacuum chambers.
H01L 21/673 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components using specially adapted carriers
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
17.
Actuator for maintaining alignment of die detachment tools
A die detachment apparatus for detaching a die from an adhesive tape on which the die is mounted includes a pick-and-place tool movable along a pick-up axis for picking up the die from the adhesive tape and a die ejector comprising an ejector shaft including an ejector pin. The ejector pin is movable parallel to the pick-up axis to raise the die from the adhesive tape to facilitate pick-up of the die by the pick-and-place tool. At least one movable table to which the ejector shaft is operatively coupled is actuable by at least one piezoelectric actuator which is connected to the movable table via a flexure. Actuation by the piezoelectric actuator forces the movable table and ejector shaft to move in directions which are perpendicular to the pick-up axis for alignment of the ejector pin with the die pick-up tool along the pick-up axis.
B23P 19/00 - Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformationTools or devices therefor so far as not provided for in other classes
18.
Control and monitoring system for thin die detachment and pick-up
During detachment of a die from an adhesive tape, the inner and outer portions of a first side of the die which is in contact with the adhesive tape is supported with a support surface. A collet contacts the inner and outer portions of a second side of the die opposite to the first side. Support is withdrawn from the outer portion of the die such that the outer portion of the second side of the die bends away from the collet while the support surface only supports the inner portion of the die. Vacuum suction from the collet is applied to attract the outer portion of the die towards the collet and the vacuum suction pressure is monitored until a threshold pressure is reached indicating that the outer portion of the die is contacting the collet. Thereafter, the collet is lifted while holding the die with vacuum suction to completely separate the die from the adhesive tape.
Adhesive is dispensed for conducting die bonding onto a substrate including rows of bond pads aligned along a first axis and columns of bond pads aligned along a second axis transverse to the first axis where target dispensing positions are located. A first dispensing head incorporating a first nozzle and a second dispensing head incorporating a second nozzle are provided and the substrate is fed along the first axis to a position where the first and second dispensing heads are located. Pattern recognition of a columnar section of the substrate comprising one or more consecutive columns of bond pads with an optical system may be conducted by moving the optical system along the second axis relative to the substrate. Thereafter, the first nozzle and the second nozzle are driven concurrently to dispense adhesive from the first and second nozzles onto the target dispensing positions in the same columnar section of the substrate.
Multiple types of adhesives contained in separate containers are transferred from a supply of adhesives to a substrate. A first stamping pin is moved to a position of a first container containing a first adhesive, and the first adhesive is transferred with the first stamping pin from the first container to the substrate before bonding a first die onto the first adhesive. A second stamping pin is then moved to a position of a second container containing a second adhesive, and the second adhesive is transferred with the second stamping pin from the second container to the substrate before bonding a second die onto the second adhesive.
B65C 9/22 - Gluing the labels or articles by wetting, e.g. by applying liquid glue or a liquid to a dry glue coating
B05C 1/02 - Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to separate articles
A die detachment apparatus for partially delaminating a die from an adhesive tape on which it is mounted comprises a cover having a support surface that is operative to support the adhesive tape, the support surface including a set of cover holes. A movable pin chuck is positioned below the support surface and includes a set of pin holes that are arranged coaxially with the cover holes. The movable pin chuck is configured for detachably inserting a set of pins in a first desired configuration on some of the pin holes, and the pins are also operable to be relocated on the pin chuck to form another desired configuration. The pins are operative to protrude from the cover by passing through the cover holes to contact and lift the die.
A die bonder comprises a bond head having a load shaft which passes through the bond head and a collet located at one end of the load shaft for holding a die to be bonded. A bond force motor is operative to drive the load shaft along a travel axis in directions towards and away from a die bonding position. A rotary motor is operative to rotate the load shaft about a rotational axis parallel to the travel axis. A coupler which comprises a bearing couples the load shaft to the bond force motor to allow the load shaft to rotate about the rotational axis relative to the bond force motor.
A method of aligning a die when the die is held with a circuit pattern on a first side of the die facing away from an infrared light source, wherein infrared light from the infrared light source is projected onto a second side of the die opposite to the first side such that the infrared light passes through a body of the die. From the second side of the die, an image of the infrared light reflected from the circuit pattern is detected and captured. Thereafter, an alignment of the die from the captured image of the die is determined.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
24.
Acoustic cleaning system for electronic components
An apparatus for cleaning electronic packages comprises a tank containing cleaning fluid and a holder above the tank that supports the electronic packages above a top surface of the cleaning fluid with the electronic packages facing the cleaning fluid. Acoustic energy generators are immersed in the cleaning fluid for generating and propagating acoustic energy towards the top surface of the cleaning fluid to create streaming fluid jets projecting upwardly at the top surface to contact and clean the electronic packages supported on the holder.
B08B 3/00 - Cleaning by methods involving the use or presence of liquid or steam
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
A die bonder is provided comprising a bond head including a collet for picking up a die and bonding the die at a bonding site. The die bonder further comprises a first motor which is connected to the collet by a shaft for driving the collet in driving directions towards and away from the bonding site and a second motor which is connected to the bond head for driving the bond head in directions parallel to the driving directions of the first motor. A rotary motor is also operatively connected to the collet for rotating the collet about a rotational axis that is parallel to the driving directions of the first motor. The shaft is slidably connected to the rotary motor and is slidable relative to the rotary motor when it is driven by the first motor to move.
Multiple connector clips are bondable onto an electronic device simultaneously with a rotary clip bonder, wherein a pick head comprising a plurality of collets is positioned at a clip supply channel. A plurality of connector clips are picked up from the clip supply channel in a fixed orientation with the pick head and are conveyed to a clip bonding area where the electronic device is located. The pick head is rotated with a rotary motor about a rotational axis passing through a shaft connecting the rotary motor to the pick head in order to change the orientation of the plurality of connector clips, before the connector clips are bonded at the clip bonding area.
B23P 19/00 - Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformationTools or devices therefor so far as not provided for in other classes
27.
Direct current motor incorporating thermal control
A direct current motor comprises a magnet assembly having a pair of magnets for generating a magnetic field and a coil assembly located between the pair of magnets, the coil assembly and the magnet assembly being movable relative to each other. The coil assembly further comprises a first coil section and a second coil section which are electrically connected to each other. A current generator is electrically connected to the coil assembly and is operative to provide first, second and third currents. The first current is electrically connected directly to the first coil section and the second current is electrically connected directly to the second coil section whereas the third current is electrically connected to the first and second coil sections at a position connecting the first and second coil sections.
An apparatus for bonding dice onto one or more substrates placed on a base comprises a first bond head and a second bond head. Each bond head incorporates a bonding tool which is configured for holding a die and both bond heads are driven by at least one linear motion actuator towards the substrate. The first and second bond heads are mounted on a stand and each comprises a locking mechanism which is operative to lock the bond head to the stand, and a compliant mechanism that is actuable to exert a bonding force on the bonding tool to bond each die to the substrate after the bond head has been locked to the stand.
B23K 31/02 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to soldering or welding
B23K 37/00 - Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass
A method for determining virtual cutting lines for a substrate prior to its singulation is provided whereby the substrate comprises first and second rows of alignment marks which are substantially parallel to each other such that a pair of alignment marks each from the first and second rows of alignment marks is configured for determining a position of a virtual cutting line. The method comprises the steps of positioning the first row of alignment marks along a relative motion path of a first camera and positioning the second row of alignment marks along a relative motion path of a second camera. While the substrate is being moved relative to the first and second cameras along the respective relative motion paths without stopping, the first and second cameras capture images of multiple pairs of alignment marks from the first and second rows of alignment marks during such motion. Thereafter, the position of each virtual cutting line is determined from the images of each pair of alignment marks along the first and second rows of alignment marks relating to the virtual cutting line and stored in a storage device for use during singulation.
A die detachment device for delaminating a die which is mounted at a position on an adhesive film comprises a plurality of movable plates having quadrilateral-shaped contact surfaces which are arranged adjacent to one another. The plurality of movable plates comprises an intermediate movable plate and outer movable plates on opposite sides of the intermediate movable plate. The contact surfaces of the movable plates together form a combined contact surface for supporting the adhesive film at the position of the die, each movable plate being movable relative to the other movable plates towards and away from the die.
A motor is provided comprising a magnet assembly having two rows of magnets arranged along a first axis, which are separated by a gap for generating magnetic flux lines between the rows of magnets. The motor further comprises a coil bracket which is located within the gap between the two rows of magnets. The coil bracket includes a first set of coils arranged along the first axis that are operative to drive movement of the coil bracket relative to the magnet assembly along the first axis. A second set of coils arranged along the first axis are operative to drive movement of the coil bracket relative to the magnet assembly along a second axis which is orthogonal to the first axis between a first end position and a second end position along the second axis. The first set of coils is fully located within the flux lines generated by the magnet assembly at both the first and second end positions of the coil bracket and the second set of coils is located at least partially outside the flux lines generated by the magnet assembly at the second end position of the coil bracket.
A device handler for testing and sorting electronic devices has a testing station operative to test the electronic devices and to classify them according to different binning characteristics. A buffer assembly receives electronic devices which have been classified at the testing station, and the buffer assembly further comprises a first loading region having a plurality of receptacles and a second loading region having a plurality of receptacles. An output station is operative to unload electronic devices according to their different binning characteristics from either one of the first or second loading region of the buffer assembly for storage while electronic devices are being loaded onto the other loading region.
A system for maintaining thermal stability of a motion stage driven by a motor comprises a motion current generator operative to produce a motion current to drive the motion stage to move and a thermal current generator operative to produce a thermal current to dissipate heat in the motion stage for controlling a temperature of the motion stage without producing corresponding movement of the motion stage. A summation controller is operative to combine the motion current with the thermal current, and to produce a combined current output to the motor.
H02P 6/00 - Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor positionElectronic commutators therefor
H02P 5/00 - Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
H02P 7/00 - Arrangements for regulating or controlling the speed or torque of electric DC motors
G05D 23/275 - Control of temperature characterised by the use of electric means with sensing element expanding, contracting, or fusing in response to changes of temperature
G01N 25/00 - Investigating or analysing materials by the use of thermal means
A collet is provided for picking up a die mounted on an adhesive surface. A flat platform at an end of the collet is configured to hold a planar surface of the die during pick-up of the die and a flange protruding from one side of the platform is operative to push against a side of the die which is substantially perpendicular to the planar surface of the die during a die pick-up process.
An apparatus for transferring a plurality of electronic components includes a row of pick heads operative to pick up the electronic components simultaneously from a first location and to place them at a second location. Additionally, there is a driving mechanism operative to drive the pick heads to move relative to one another in directions which are parallel to a length of the row of pick heads whereby to adjust a pitch width of the pick heads.
B65G 25/00 - Conveyors comprising a cyclically-moving, e.g. reciprocating, carrier or impeller which is disengaged from the load during the return part of its movement
36.
Nozzle device employing high frequency wave energy
A nozzle device comprising a nozzle chamber includes a fluid inlet located at a first side of the nozzle chamber which is operative to introduce fluid into the nozzle chamber in an injection direction and a fluid outlet at a second side of the nozzle chamber which is operative to expel fluid from the nozzle chamber. A high frequency wave generator is also located in the nozzle chamber which is oriented and operative to generate high frequency waves in a direction which is substantially parallel to the injection direction, whereby to impart high frequency energy to the fluid in the nozzle chamber.
B05B 1/08 - Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops of pulsating nature, e.g. delivering liquid in successive separate quantities
A bonding apparatus for bonding a length of wire comprises a first module which is drivable along a linear axis towards and away from a bonding point and a second module slidably mounted to the first module. A wire cutter is mounted to the first module and a bonding tool is mounted to the second module. A coupling mechanism is operative to lock the second module in fixed relative position to the first module, and to unlock the second module from its fixed relative position to the first module so that the second module is slidable relative to the first module in directions parallel to the linear axis.
B23K 31/02 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to soldering or welding
B23K 37/00 - Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass
An apparatus for correcting a positional offset of a bonding tool during bonding operations comprises a first fiducial mark and a second fiducial mark spaced from the first fiducial mark located on the bonding tool. A first imaging path emanates from the first fiducial mark and a second imaging path emanates from the second fiducial mark when the first and second fiducial marks are illuminated at a reference position. An optical system is positioned along the first and second imaging paths to view images of the first and second fiducial marks. A processor is operative to calculate a current position of the bonding tool and to compare it to a desired position so that the bonding tool's positional offset may be corrected by moving it to the desired position.
A method is provided for bonding a die comprising a solder layer which has a melting point Tm. A bond head is heated to a bond head setting temperature T1, which is higher than Tm, and a substrate is heated to a substrate setting temperature T2, which is lower than Tm. The bond head then picks up the die and heats the die towards temperature T1 so as to melt the solder layer. The solder layer of the die is pressed onto the substrate so as to bond the die to the substrate, and thereafter the bond head is separated from the die so that the solder layer is cooled towards T2 and solidifies.
B23K 31/02 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to soldering or welding
40.
Test handler including gripper-type test contactor
A test handler is provided for testing electronic devices having light-emitting elements. Electronic devices are mounted at a loading position, optical measurements are conducted at a test contact position where a testing device is located for optical communication with the light-emitting elements and then tested electronic devices are removed at an unloading position. Multiple test contactors hold the electronic devices and move them to and through the loading position, test contact position and unloading position in sequence. Each test contactor comprises a device contact point including electrical conductors which are connected to electrical contacts of the electronic device when the electronic device is mounted at the device contact point, and a retaining mechanism grips the electronic device at the device contact point such that the retaining mechanism does not obstruct the optical communication between the testing device and the light-emitting element at the test contact position.
A test handler comprises a package support for holding an electronic device in a certain orientation and for transporting the electronic device to a testing station for testing the electronic device. An orientation correction device is actuable and operative to engage the package support and to rotate the package support so as to change the orientation of the electronic device.
A driving mechanism comprises a fixed housing, a movable housing on which an object to be driven is mounted and a driving motor which is operative to drive the movable housing to move linearly as well as to rotate relative to the fixed housing. An inductance-type encoder determines both linear and rotary displacement of the movable housing relative to the fixed housing, whereby to provide closed-loop control of the position of the object in both linear and rotary directions.
A driving mechanism comprises a fixed housing, a movable housing on which an object to be driven is mounted and a driving motor which is operative to drive the movable housing to move linearly as well as to rotate relative to the fixed housing. An inductance-type encoder determines both linear and rotary displacement of the movable housing relative to the fixed housing, whereby to provide closed-loop control of the position of the object in both linear and rotary directions.
A liquid dispensing apparatus is provided which has a syringe for storing and dispensing a liquid, and a connector passage connected to the syringe. A positive pressure passage is connected to an air source for supplying positive pressure to the syringe, and there is a pressure valve located along the positive pressure passage that is operative to control the flow of air along the positive pressure passage. A vacuum passage is connected to a vacuum generator for supplying vacuum pressure to the syringe, and there is a vacuum valve located along the vacuum passage that is operative to control the flow of air along the vacuum passage. The positive pressure passage and vacuum passage are connected to the connector passage. A pressure sensor is also provided to measure the pressure in the connector passage.
A rotary-type handler for and method of handling electronic devices for testing, the handler comprising at least two carrier portions (14, 16, 25, 26, 45, 46, 54, 56, 65, 84, 86), each for transferring devices (3) from a loading position (L) to a test position (T) and from there to an unloading position (U), wherein each carrier portion is rotatable and the at least two carrier portions are rotatable independently of each other.
A method and system for molding an electronic device which is located next to a molding cavity and clamped to the molding cavity during molding, comprising providing molding compound in a mold supply pot, discharging the molding compound from the mold supply pot into a runner, and distributing the molding compound through the runner into the molding cavity in order to fill the molding cavity. A movable surface comprised in the molding cavity is positioned to form a first gap between the movable surface and the electronic device when the molding cavity is being filled. After filling the molding cavity with molding compound, the movable surface is driven to form a second gap between the movable surface and the electronic device which is smaller than the first gap, thereby compressing the molding compound in the molding cavity. A molded electronic device thus produced is then separated from the molding cavity.
A method for bonding a semiconductor device onto a substrate is provided which comprises the steps of picking up a solder ball with a pick head, placing the solder ball onto the substrate and melting the solder ball on the substrate and placing the semiconductor device on the molten solder ball. The molten solder ball is then allowed to cool to form a solder joint which bonds the semiconductor device to the substrate.
A collet mounting assembly for a die bonder comprises a collet mount having a first end attached to the die bonder and a second end opposite the first end with a cavity defined in the second end for receiving a shaft of the collet. The collet mounting assembly further comprises a fastener for securing the collet inside the cavity of the collet mount. A compression force is generated around the shaft of the collet received in the collet mount by the flexing of the fastener when it is attached to the collet mount, for securing the collet within the cavity of the collet mount.
An alignment tool for a bonding apparatus comprises a loading surface for receiving a pushing force from a surface of a device which is attached to the bonding apparatus, the loading surface being arranged and constructed to experience a tilting moment upon receiving an unequally distributed pushing force from a misaligned device acting on it. The loading surface transmits the tilting moment experienced by it to a sensing surface which is operatively connected to the loading surface through a columnar body, which has a smaller width than the loading surface and the sensing surface, and which connects the loading surface and the sensing surface. An array of piezoelectric elements communicates with the sensing surface and produces electrical signals in response to the tilting moment such that a computing unit operatively connected to the piezoelectric elements may detect a direction of tilt of the loading surface from the electrical signals produced by the piezoelectric elements.
An assembly for reducing oxidation of a semiconductor device comprises a holding device for securing the semiconductor device to a platform. The holding device includes at least one opening for providing access by a bonding tool to bonding areas where the semiconductor device is to be bonded. A slidable cover covers the holding device and has a slot for providing access by the bonding tool to the bonding areas through the slot. A guiding device is positioned on the slidable cover and is coupled to a pusher which is operative to push the slidable cover to move along a first axis. The pusher is further guided by the guiding device to move relative to the slidable cover along a second axis which is perpendicular to the first axis without pushing the slidable cover to move in the second axis.
B23K 37/04 - Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass for holding or positioning work
A workpiece transport system and method, the system comprising: first and second rail transport units (3a, 3b) which are operable to transport a workpiece (W) therealong, wherein the rail transport units each comprise a transport rail (15) which is operable to support an edge of the workpiece and a workpiece transport mechanism which is operable to engage the edge of the workpiece when supported by the transport rail and transport the same along the transport rail; and a workpiece support unit (7) which is operable to support a workpiece transported by the rail transport units, wherein the workpiece support unit comprises a body member (71) which includes a workpiece support for supporting the workpiece, and first and second edge supports (75) which are disposed to opposite edges of the workpiece support and movable between a first, inoperative position and a second, operative position in which the edges of the workpiece are supported by respective ones of the first and second edge supports.
A linear motor comprising a coil assembly and a magnet assembly is provided with a cooling apparatus which comprises a segmented air knife assembly. The segmented air knife assembly has a plurality of slot openings distributed along its length which is coupled to the linear motor and it is operative to discharge cooling air into a gap between the coil assembly and magnet assembly in a discharge direction. An inclined surface extends from the plurality of slot openings and slopes at an obtuse angle away from the discharge direction of the cooling air. Each slot opening is individually configured to discharge the cooling air in the discharge direction at a sufficient velocity so as to entrain atmospheric air along the inclined surface to amplify the cooling air that is so discharged.
H02K 41/00 - Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
53.
Dispensing solder for mounting semiconductor chips
A method for mounting a semiconductor chip onto a substrate comprises the steps of positioning a solder dispenser over the substrate and passing a length of solder wire through the solder dispenser to the substrate. The feeding of the wire to the substrate in a feeding direction is controlled with a wire feeder. The solder dispenser is moved relative to the substrate with a positioning device along at least one of two orthogonal axes that are substantially perpendicular to the feeding direction contemporaneously with feeding the solder wire to the surface of the substrate to dispense a line of molten solder onto the substrate. The semiconductor chip is then mounted onto the molten solder that has been dispensed onto the substrate.
B23K 31/02 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to soldering or welding
54.
WORKPIECE CARRIER AND WORKPIECE CARRIER LOADING/UNLOADING SYSTEM AND METHOD
A workpiece carrier for supporting a plurality of workpieces, preferably flexible workpieces, the workpiece carrier comprising : a plurality of workpiece supports, each for supporting a workpiece; and a plurality of workpiece positioners, each associated with a respective one of the workpiece supports and being operative to position a workpiece at a predetermined position in the respective workpiece support, wherein the workpiece positioners each comprise a plurality of biasing elements which are disposed in opposed relation and configured laterally outwardly to bias the workpiece to tension the workpiece and position the workpiece at the predetermined position.
A semiconductor package handling system is provided comprising a package holder for receiving and holding singulated semiconductor packages, and a first inspection device which is arranged and configured to inspect a first surface of the packages while they are being held by the package holder. An offloading device receives the packages from the package holder and conveys them packages to an offloader, and a second inspection device is arranged and configured to inspect a second surface of the packages which is opposite from the first surface while they are being held by the offloading device.
A jet dispenser is provided with a giant magnetostrictive actuator which expands or contracts in response to electric currents. A set of flexural elements is coupled to first and second ends of the giant magnetostrictive actuator and flexes when the giant magnetostrictive actuator expands or contracts. The jet dispenser further comprises a chamber containing fluid and the fluid is dispensable through a nozzle which is in communication with the chamber. A piston coupled to the set of flexural elements is slidably located in the chamber and is actuable by flexion of the flexural elements to apply a force against the fluid for dispensing fluid through the nozzle.
B05B 1/08 - Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops of pulsating nature, e.g. delivering liquid in successive separate quantities
57.
Wire bonding system utilizing multiple positioning tables
A wire bonding apparatus and method in which separate first and second positioning tables are provided for mounting electronic devices to be wire bonded, and a bonding tool is provided at a bonding position for bonding the electronic devices. First and second loading/unloading positions are provided for loading electronic devices to or unloading electronic devices from the positioning tables. The first and second positioning tables are operative to move independently of each other, such that the first positioning table is movable between the first loading/unloading position and the bonding position and the second positioning table is movable between the second loading/unloading position and the bonding position.
B23K 31/02 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to soldering or welding
58.
Optical system having selectable field for inspection
An optical system for viewing an object has a plurality of lenses and a main optical axis coincident with the centers of the lenses. The optical system further comprises a low magnification optical subsystem that is operative to view the object at a first magnification and a high magnification optical subsystem that is operative to view the object at a second magnification that is higher than the first magnification. The high magnification optical subsystem has a high magnification optical axis along which light rays that are received from the main optical axis are transmitted. A movable element is locatable on the high magnification optical axis and is movable in directions transverse to the axis for receiving and transmitting light rays.
A singulation system for a workpiece has a carrier for mounting the workpiece during singulation and a receptacle for collecting debris formed. A driving mechanism, which is operative to move the carrier and the workpiece, is at least partially covered by a bellows. A bellows protecting cover extending over the bellows is coupled between the carrier and the receptacle and is operative to guide debris from the carrier along its longitudinal length towards the receptacle. The bellows protecting cover further comprises side walls extending along opposite sides of its longitudinal length to prevent debris from falling off its sides.
A method of detecting wear and damage to a rotary cutting blade for singulating a substrate is provided comprising the steps of providing a sensor to locate a first detecting position at an edge of the blade and performing dicing with the blade while the sensor is maintained substantially at the first detecting position for detecting damage to the blade. Subsequently, an extent of wear of the blade is determined by driving the sensor in the direction of the blade to locate a second detecting position at the edge of the blade as a diameter of the blade is reduced due to dicing. Thereafter, while dicing is performed with the blade, the sensor is maintained substantially at the second detecting position for detecting damage to the blade.
G01N 21/00 - Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
B24B 49/00 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or workArrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
A system for cleaning semiconductor packages is provided which includes a pickhead that is configured to hold the semiconductor packages in an array arrangement and a plurality of nozzles, each of which is constructed and arranged to project a separate jet of cleaning fluid upwardly against the semiconductor packages. A megasonic energy generator is coupled for imparting megasonic energy to the cleaning fluid and a driving device drives relative movement between the plurality of nozzles and the pickhead to direct the said jets to clean the array of packages on the pickhead.
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
B08B 3/02 - Cleaning by the force of jets or sprays
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
A die is detachable from an adhesive tape on which the die is mounted with a die detachment tool comprising a vacuum enclosure that is operative to provide a vacuum suction on the adhesive tape. One or more ejector pins are housed in the vacuum enclosure and are projectable from the vacuum enclosure for lifting the die and adhesive tape. A vibrational tool is housed in the vacuum enclosure adjacent to the ejector pins and it is projectable from the vacuum enclosure to contact a portion of the adhesive tape at which the die is located. The vibrational tool is further operative to oscillate the adhesive tape and die for promoting delamination of the die from the adhesive tape.
Singulation handler is provided which comprises a loading zone where a carrier mechanism receives and holds an electronic component and a singulation zone where the electronic component held by the carrier mechanism is singulated. A loader that is movable along an axis is operative to place the electronic component onto the carrier mechanism when it is situated in the loading zone and a vision system that is movable along substantially the same axis as the loader is operative to obtain at least one image of the electronic component showing alignment information so that the electronic component can be properly aligned during singulation.
A sorting system is provided for electronic components such as LED devices which includes a testing station for testing and determining a characteristic of each electronic component. A first tray has a plurality of receptacles for receiving tested electronic components and a second tray has more receptacles than the first tray for receiving tested electronic components. Electronic components comprising tested characteristics that occur with greater frequency are loaded into the receptacles of the first tray and electronic components comprising tested characteristics that occur with lower frequency are loaded into the receptacles of the second tray.
A thermal insulation system is provided for a component of a bonding system, such as an optical system. The thermal insulation system comprises multiple insulation layers located between the component and a heat source. The multiple insulation layers comprise at least one layer of moving air injected into the layer and a cover layer enclosing the layer of moving air. The multiple insulation layers may further comprise a layer of static air.
A bonding apparatus comprising a bond arm and a wire bonding tool mounted to the bond arm is provided with thermal insulation in the form of a thermal shield substantially enclosing the bonding tool for insulating the bonding tool from ambient heat.
A bonding apparatus is provided comprising a bonding stage for holding a bonding tool, an air distribution system mounted to the bonding stage and an air inlet attached to the air distribution system. The air distribution system is connected to the air inlet for receiving air from the air inlet, and is operative to pass the air over multiple surfaces of the bonding stage for the purpose of temperature control.
A wiper blade for use in a screen printing machine which comprises a blade element (25), typically of stainless steel, and a tetrahedral amorphous carbon (ta-C) coating (27) on the blade element (25), and a method of manufacturing the same.
A method of accurately placing an object with a pick and place machine (27) provides raw material (10). A desired surface topography is created in the raw material (10'). The raw material is diced into parts using a bevel cut so that each of the parts has bevel surfaces (17). A fixture (18) is provided that has a plurality of spaced cavities (22) with each cavity having bevel surfaces (23) constructed and arranged to mate with the bevel surfaces of an associated part. The pick and place machine picks and places each part into an associated cavity such that the bevel surfaces of the part mates with the bevel surfaces of the cavity.
A screen printing machine and method, the screen printing machine comprising: a print head (111) which is operable to drive a material through a printing screen (109) and deposit the material onto a workpiece (w); an imaging unit (121) which comprises a vision camera (123) for imaging at least one of the printing screen (109) and the workpiece (w), and a positioning mechanism (125) which is operable to position the vision camera; and an end effector (141) which is operable to perform an operation on the workpiece and is coupled to the vision camera, such as to be moved commonly therewith by the positioning mechanism, wherein the screen printing machine is operable in one of a first mode in which the print head is operated to print material deposits on the workpiece, and a second, mode in which the end effector is actuated to perform an operation on the workpiece at defined positions.
An effector module (203) and system for use with a screen printing machine, which includes a frame support for supporting a mounting frame of a printing screen unit, and a method of operating a screen printing machine, the effector module comprising: a mounting frame (210), which is configured to replace the mounting frame of the printing screen unit and provide for mounting of the effector module in the frame support of the screen printing machine; a support member (205), which extends from the mounting frame; an attachment member (211) to which an end effector (212) is removably attached; and a positioning mechanism (215) which is mounted to the support member and connected to the attachment member, such as to provide for positioning of the attachment member in an X-Y plane. •
A molding apparatus is provided for molding a leadframe, the molding apparatus comprising a mold having a leadframe-receiving area on its surface that is configured to receive and clamp the leadframe in the leadframe-receiving area. At least one molding cavity and a plurality of vacuum suction holes formed adjacent to the molding cavity are located within the leadframe-receiving area. The vacuum suction holes are operative to evacuate air from the mold surface, especially the molding cavity, through air vents connecting the vacuum suction holes to the molding cavity.
H01L 21/56 - Encapsulations, e.g. encapsulating layers, coatings
B29C 45/14 - Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mouldApparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
A clamping mechanism having clamping jaws is provided for holding an object. The clamping mechanism comprises a solenoid pad connected to at least one of the clamping jaws which is operative to actuate movement of the clamping jaw, and a solenoid motor that is operative to attract the solenoid pad towards it when it is energized. Further, a voice coil motor is rigidly coupled to the solenoid pad to drive the solenoid pad in directions towards or away from the solenoid motor.
A wiper blade holder for holding a wiper blade (103) for use in a screen printing machine and a wiper blade therefor, the wiper blade holder comprising : a body unit (101) comprising a body member (107) which includes a mounting surface (123) to which a wiper blade is mounted; and at least one mounting fixture (105) which is attached to the body unit for mounting the wiper blade holder to a screen printing machine. In one embodiment the wiper blade holder further comprises: at least one magnet (109) which acts to hold the wiper blade to the body unit. In one embodiment the at least one mounting fixture is separable from the body member, such as to allow.for use of different mounting fixtures which provide for adjustment of the inclination of the mounting surface of the body member relative to the at least one mounting fixture.
A damping apparatus is provided for a positioning stage that is operative to move and position an object along a motion axis. The damping apparatus comprises a motion transformation device operative to rotate the positioning stage about a rotary axis that is substantially perpendicular to the motion axis, in response to forces generated to the positioning stage during acceleration or deceleration thereof. Resilient elements connected to the positioning stage serve to reduce transmission of vibration generated from the positioning stage.
A method for damping vibrations in a stepper motor with micro-stepping control which comprises the steps of identifying the force amplitudes and phase shifts of multiple harmonic detent torques of the stepper motor, such as the first, second and fourth harmonic detent torques, and tuning the stepper motor with different current commands until minimum friction and resistive torque are obtained. Thereafter, a compensating harmonic current derived from said force amplitudes and phase shifts of the said multiple harmonic detent torques is injected into a current command during operation of the stepper motor to compensate for torque ripples.
A workpiece carrier for supporting a plurality of workpieces, the workpiece carrier comprising : a plurality of support elements, each for supporting a workpiece; and a plurality of positioning elements, each associated with a respective one of the support elements and being operative to position a workpiece at a predetermined position in the respective support element, wherein the positioning elements each comprise a plurality of biasing elements which are disposed in opposed relation and configured laterally to bias the workpiece and position the workpiece at the predetermined position.
H05K 13/00 - Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
H01L 21/673 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components using specially adapted carriers
78.
Singulation handler system for electronic packages
A singulation handler system is provided for a strip of electronic packages, which comprises an onloader located adjacent to an onloading location for providing an unsingulated strip of packages for singulation and a cutting jig for mounting the strip of unsingulated packages. The cutting jig is movable between the onloading location and a singulation location at which the strip is singulated by a singulation engine. The system further includes a buffer boat for holding singulated packages that have been removed from the cutting jig and which is operative to convey the singulated packages in a fixed relative orientation. A gang pick head is operative to transfer multiple singulated packages simultaneously from the buffer boat to a rotary turret device and an offloader is provided for transferring singulated packages from the rotary turret device to containers in which the singulated packages are storable.
An apparatus is provided for supplying a shielding gas during the bonding of wires to electronic components with a bonding tool comprising a horn and a capillary. The apparatus comprises a main body with an elongated slot having a width that extends into the main body from a side of the main body generally in a first direction and the slot also extends from a top surface to a bottom surface of the main body in a second direction perpendicular to the first direction for the width of the slot. The slot is sized to receive a tip of the capillary which is operable to pass through the slot in the second direction. A gas outlet, which may be formed inside the slot, supplies shielding gas into the slot.
A large electronic device having a bonding area on one side that comprises first and second portions may be bonded by first locating the first portion but not the second portion of the electronic device for bonding by a bonding tool. After the first portion of the electronic device has been bonded, the electronic device is conveyed to a rotary platform that is rotatable along a substantially horizontal plane. The electronic device is rotated on the rotary platform to change the respective positions of the bonded first portion and unbonded second portion of the electronic device, before the electronic device is conveyed to the bonding tool such that the second portion of the electronic device is located for bonding by the bonding tool. The second portion of the electronic device may then be bonded.
B23K 31/02 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to soldering or welding
A bonding apparatus is provided which includes a device handler for handling electronic devices, the bonding apparatus including a bonding tool at which the electronic devices are locatable for bonding. A storage assembly is provided for storing multiple electronic devices and a conveying track is further provided for conveying electronic devices towards and away from the bonding tool. The device handler includes a rotary platform for holding an electronic device, and which is operable between an orientation wherein the rotary platform is aligned with the conveying track for transferring an electronic device between the rotary platform and the conveying track, and another orientation wherein the rotary platform is aligned with the storage assembly for transferring an electronic device between the rotary platform and the storage assembly.
B23K 37/04 - Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass for holding or positioning work
A linear motor is provided that includes a magnetic assembly, a movable element and a coil assembly that is operative to interact with the magnetic assembly to drive the movable element along a direction. The coil assembly further includes a first coil section having a first motor force constant and a second coil section having a second motor force constant that is lower than that of the first coil section for driving the movable element along the said direction.
H02K 41/00 - Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
83.
Die detachment apparatus comprising pre-peeling structure
An apparatus and method are provided for detaching a die from an adhesive film, the apparatus comprising a vacuum platform having a surface configured to support a part of the adhesive film on which the die is attached. A plurality of pre-peeling columns having substantially flat contact surfaces are projectable relative to the surface of the vacuum platform to push against the adhesive film at the position of the die to generate initial peeling between the die and the adhesive film. Thereafter, a plurality of ejector pins that are positionable relative to the pre-peeling columns are operative to push against the adhesive film at the position of the die to generate further peeling between the die and the adhesive film. The die is then removed from the adhesive film.
B23P 19/00 - Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformationTools or devices therefor so far as not provided for in other classes
A manufacturing process and apparatus therefore are provided for processing an electronic device comprising oxidizable material during processing. The electronic device is located inside a chamber and is heated a processing temperature with a heater. A reductive atmosphere is created in the chamber by supplying a gas comprising glycolic acid vapor while processing the electronic device at the processing temperature.
A molding system for provided which is configured for molding a substrate comprising a plurality of individual carriers each of which is pre-cut into a shape of a memory card device and connected to a frame of the substrate by narrow tie bars. A molding plate is configured to receive the substrate, and a cavity plate configured to be clamped to the molding plate further comprises a plurality of molding cavities each constructed in the shape of the said carriers. The cavities are operative to create molded packages onto the carrier conforming to a shape of the memory card device without need for further forming of the molded compound after molding. Additionally, a nozzle on the surface of each cavity is operative to introduce molding material into the cavity in a direction that is substantially perpendicular to a plane of the substrate placed on the molding plate.
B29C 45/14 - Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mouldApparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
A direct drive robotic manipulator is provided which includes a plurality of segments that are rotatably coupled with respect to one another. A plurality of spindles connects the segments for relative rotation therebetween, and a plurality of direct drive assemblies is further coupled to the plurality of spindles. Each direct drive assembly encloses an end of a spindle and comprises a rotor assembly to which the spindle is attached for manipulating the spindle. A positional measurement apparatus may also be included at each direct drive assembly to ascertain an angular disposition of a segment relative to an adjoining segment.
An image capturing method and apparatus for pattern recognition of an electronic device are provided in which an electronic device is moved relative to a vision system for positioning the vision system over a target position on the electronic device, and when the vision system is positioned to view the target position, the vision system is operative to capture an image of the target position while the electronic device is undergoing relative motion with respect to the vision system without stopping. Thus, the time taken for pattern recognition can be significantly reduced.
A die bonding apparatus and method is provided to automatically adjust a level of a die bonder to compensate for any physical changes occurring in the die bonder during bonding. A bond arm support is drivable to a bonding level to position a die onto a bonding surface, and a bond arm is slidably mounted to the bond arm support for holding and bonding the die. The bond arm is configured to be urged by the bonding surface to move relative to the bond arm support upon contact of the die onto the bonding surface. A measuring device is provided for determining a distance moved by the bond arm relative to the bond arm support during bonding, and a controller is responsive to the distance determined by the measuring device to change the bonding level to which the bond arm support is driven.
An apparatus and method for automatically controlling a clamp gap between clamping arms of a wire clamp is provided wherein a motor generates an actuation force for moving the clamping arms relative to each other. A resilient member is positioned such that the actuation force acts upon and flexes the resilient member to an extent that is proportional to the clamp gap, and the clamp gap is controlled by adjusting the amount of actuation force according to a predetermined relationship between the actuation force and the clamp gap.
A wiper blade (11) and wiper blade assembly for a screen printing machine and a method of fabricating the same, the wiper blade (11) comprising an elongate body member (15) which includes a recess (16) in a surface thereof, and an elongate contact member (17), having an arcuate screen contact surface (19), which is mounted in the recess (16) by an adhesive (21).
A method of forming a wire bond with a bonding tool is provided that comprises the steps of forming a ball bond onto a bonding surface, raising the bonding tool away from the ball bond to form a neck portion integrated with a top of the ball bond, locating a circumference of a tip of the bonding tool onto the neck portion, pressing the neck portion with the circumference of the tip to form a depression in the neck portion without bonding the neck portion to the ball bond, and thereafter raising the bonding tool away from the ball bond.
B23K 31/02 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to soldering or welding
92.
Linear motor cooling apparatus with air amplification
A cooling apparatus is provided for a linear motor that comprises a coil assembly and a magnet assembly, wherein the coil assembly generates heat during operation. The cooling apparatus comprises a compressed air inlet positioned to discharge compressed air in a direction directly towards a gap between the coil assembly and magnet assembly, and an inclined surface extending from the compressed air inlet and sloping at an obtuse angle away from the discharge direction of the compressed air. The compressed air inlet is configured to discharge the compressed air at a sufficient velocity so as to entrain atmospheric air along the inclined surface to amplify the compressed air that is discharged.
H02K 41/00 - Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
An apparatus and method for degating is provided for separating excess molding material from encapsulated electronic packages while the electronic packages are located in a molding system. At least one holding device is coupled to a mold of the molding system, which is located such that excess molding material is molded onto at least a portion of the holding device during molding. A locking feature on the portion of the holding device locks the excess molding material such that the holding device may hold the excess molding material molded onto it to forcibly separate the excess molding material from the encapsulated electronic packages after molding.
A workpiece carrier for supporting a plurality of workpieces, the workpiece carrier comprising a supporting body including a plurality of workpiece support elements, each for supporting a workpiece and providing for individual positioning of the same, the workpiece support elements each including at least one biasing element for applying a biasing force to an edge of the respective workpiece, at least one first cam for acting on an edge of the respective workpiece at a first location against the bias of the at least one biasing element, and at least one second cam for acting on an edge of the respective workpiece at a second location against the bias of the at least one biasing element, wherein the at least one first cam and the at least one second cam are operable such as to enable the position of the respective workpiece to be set relative to the supporting body.
A screen printing head which, in a printing operation, is displaceable in a first direction over a surface of a workpiece to print deposits of a print medium on the workpiece, the screen printing head comprising: a print head assembly comprising a print unit comprising a main body including a print medium, cavity, which in use contains print medium, and a delivery aperture, which is in fluid communication with the print medium cavity and through which print medium is in use delivered from the print medium cavity to the surface of the workpiece, and a rotatable unit which is disposed in the print medium cavity of the main body and rotatable to displace print medium as contained in the print medium cavity; and a drive unit for rotating the rotatable unit such as to displace print medium as contained in the print medium cavity, wherein the drive unit is operative to rotate the rotatable unit to apply a force to the print medium at the delivery aperture in the main body in a second direction which is opposite to the first direction of displacement of the screen printing head.
H05K 3/12 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using printing techniques to apply the conductive material
B41F 15/42 - Inking units comprising squeegees or doctors
A frame unit for supporting a printing screen in a tensioned state, wherein the frame unit comprises a frame which includes at least one frame member, the at least one frame member (9) comprising: a supporting frame element (9) which includes a plurality of catch elements (35a, 35b, 35c, 35d) ; and at least one engagement element (11) for engagement a fitted printing screen (3) , wherein the at least one engagement element (11) is movably coupled to the supporting frame element (9) such as to be movable in one, tensioning sense to tension a fitted printing screen (3) and support the same in a tensionedd state, the at least one engagement element (11) including an engagement feature (49) which, with movement of the at least one engagement element (11) , is moved in relation to the catch elements (35a, 35b, 35c, 35d) and configured to engage the one of the catch elements corresponding in position to the tensioned state, such as therby to lock the at least one engagement element (11) there against .
A transducer assembly for a bonding apparatus is provided that comprises a horn having first and second base ends and a bonding tool attached to the horn between the first and second base ends. First and second ultrasonic generators are secured to the first and second base ends respectively. A first fastening mechanism is located on the horn between the bonding tool and the first ultrasonic generator and a second fastening mechanism is located on the horn between the bonding tool and the second ultrasonic generator such that the horn is releasably attachable to a mounting interface using the first and second fastening mechanisms. There are also transducer mounting positions disposed on the mounting interface for mounting the mounting interface to a bond head.
A printing screen unit (110), comprising: a printing screen (112), comprising a sheet, at least sections of at least one pair of opposite edges of which include one of engagement apertures (124) or engagement projections; and a supporting frame (114) including at least one pair of interface units (116,117) which are attached to the at least one pair of opposite edges of the printing screen (112), wherein the interface units (116, 117) each comprise at least one coupling element (130) which includes the other of engagement apertures or engagement projections (158) for inter-engaging with the one of engagement apertures (124) or engagement projections at a respective one of the opposite edges of the printing screen (112), and an interface member (126) which includes a coupling slot (142) for captively receiving the at least one coupling element (130) therein.
A method is provided for removing excess encapsulation material from unmolded surfaces of a molded substrate including semiconductor packages by utilizing an acid solution. The method comprises the steps of mounting the substrate to a holding device with the unmolded surfaces facing an acid source for supplying an acid solution, contacting the unmolded surfaces with the acid solution for a sufficient time to remove the excess encapsulation material from the unmolded surfaces while substantially avoiding contact with molded surfaces thereof, and thereafter removing the substrate from contact with the acid solution.
An apparatus and method are provided for effectively heating a first die stacked above a second die attached onto a substrate during wire bonding conducted on the first die. A gas outlet positionable adjacent to the first die is configured to project a hot gas onto bond pads of the first die for bringing the bond pads to a desired bonding temperature, thereby rapidly heating the first die for effective wire bonding.