A method for in-place machining of a collector ring attached to a turbine shaft of a hydroelectric generator includes: attaching a support member to stationary portions of the hydroelectric generator, the support member being configured to support a machine tool at an angle parallel to an inclination angle of an axis of rotation of the turbine shaft; attaching an adjustable positioning device to the support member; attaching the machine tool to the adjustable positioning device, the machine tool being configured to perform a machining operation on the collector ring; controlling a rotational speed of the turbine shaft to a specified rotational speed by controlling a flow of water through the turbine; adjusting the adjustable positioning device to adjust a position of the machine tool with respect to the collector ring; and performing the machining operation on the collector ring at the specified rotational speed of the turbine shaft.
H02K 15/00 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
H02K 7/18 - Structural association of electric generators with mechanical driving motors, e.g.with turbines
H02K 13/00 - Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windingsDisposition of current collectors in motors or generatorsArrangements for improving commutation
F03B 13/08 - Machine or engine aggregates in dams or the likeConduits therefor
F03B 3/18 - Stator bladesGuide conduits or vanes, e.g. adjustable
A method for in-place machining of a collector ring attached to a turbine shaft of a hydroelectric generator includes: attaching a support member to stationary portions of the hydroelectric generator, the support member being configured to support a machine tool at an angle parallel to an inclination angle of an axis of rotation of the turbine shaft; attaching an adjustable positioning device to the support member; attaching the machine tool to the adjustable positioning device, the machine tool being configured to perform a machining operation on the collector ring; controlling a rotational speed of the turbine shaft to a specified rotational speed by controlling a flow of water through the turbine; adjusting the adjustable positioning device to adjust a position of the machine tool with respect to the collector ring; and performing the machining operation on the collector ring at the specified rotational speed of the turbine shaft.
A method for repairing a discharge ring of a hydraulic turbine with a turbine runner in place includes: mounting adjustable fixtures to runner blades that are approximately evenly spaced around the turbine runner, where each adjustable fixture is mounted to a different runner blade at a different predetermined vertical position with respect to a surface of the discharge ring; attaching cutting equipment configured to remove material from the discharge ring to each adjustable fixture installed on the runner blades; installing a drive unit configured to rotate the turbine runner; controlling the drive unit to rotate the runner at a specified speed; and controlling the cutting equipment attached to each adjustable fixture to concurrently remove material from the discharge ring as the turbine runner rotates.
The stub shaft bearing for a stub shaft can be replaced while the stub shaft remains installed in a hydroelectric unit. A runner hub lifting device may be positioned within a discharge ring surrounding a runner hub. The runner hub lifting device may lift the runner hub, and a stub shaft bearing may be removed from a stub shaft. The stub shaft bearing may be disassembled into bearing sections while located in a chamber in the hydroelectric unit. The bearing sections may be removed from the chamber through a service hatch in the chamber. A replacement stub shaft bearing may be moved into the chamber and installed on the stub shaft. The runner hub lifting device may lower the runner hub.
On-site pressing of field poles for a hydroelectric generator is provided. A field pole may be placed on a press cart and press bars may be placed on top of the field pole. The press cart is moved along a track to transport the field pole to a pressing unit. Hydraulic cylinders in the pressing unit press the field pole and the press bars between the cart and a top plate of the pressing unit to straighten the field pole.
B30B 1/34 - Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by plungers under fluid pressure involving a plurality of plungers acting on the platen
B21D 3/10 - Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts between rams and anvils or abutments
B21D 3/16 - Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts of specific articles made from metal rods, tubes, or profiles, e.g. crankshafts, by specially-adapted methods or means
B30B 7/02 - Presses characterised by a particular arrangement of the pressing members having several platens arranged one above the other
B30B 15/16 - Control arrangements for fluid-driven presses
On-site pressing of field poles for a hydroelectric generator is provided. A field pole may be placed on a press cart and press bars may be placed on top of the field pole. The press cart is moved along a track to transport the field pole to a pressing unit. Hydraulic cylinders in the pressing unit press the field pole and the press bars between the cart and a top plate of the pressing unit to straighten the field pole.
B23P 9/00 - Treating or finishing surfaces mechanically, with or without calibrating, primarily to resist wear or impact, e.g. smoothing or roughening turbine blades or bearingsFeatures of such surfaces not otherwise provided for, their treatment being unspecified
B30B 9/00 - Presses specially adapted for particular purposes
H02K 1/22 - Rotating parts of the magnetic circuit
H02K 15/50 - Disassembling, repairing or modifying dynamo-electric machines
7.
REPLACING A STUB SHAFT BEARING FOR A HYDROELECTRIC TURBINE USING A RUNNER HUB LIFTING DEVICE
The stub shaft bearing for a stub shaft can be replaced while the stub shaft remains installed in a hydroelectric unit. A runner hub lifting device may be positioned within a discharge ring surrounding a runner hub. The runner hub lifting device may lift the runner hub, and a stub shaft bearing may be removed from a stub shaft. The stub shaft bearing may be disassembled into bearing sections while located in a chamber in the hydroelectric unit. The bearing sections may be removed from the chamber through a service hatch in the chamber. A replacement stub shaft bearing may be moved into the chamber and installed on the stub shaft. The runner hub lifting device may lower the runner hub.
A method for repairing a discharge ring of a hydraulic turbine with a turbine runner in place includes: mounting adjustable fixtures to runner blades that are approximately evenly spaced around the turbine runner, where each adjustable fixture is mounted to a different runner blade at a different predetermined vertical position with respect to a surface of the discharge ring; attaching cutting equipment configured to remove material from the discharge ring to each adjustable fixture installed on the runner blades; installing a drive unit configured to rotate the turbine runner; controlling the drive unit to rotate the runner at a specified speed; and controlling the cutting equipment attached to each adjustable fixture to concurrently remove material from the discharge ring as the turbine runner rotates.