A process for manufacturing an electrode utilizing electron beam (EB) or actinic radiation to cure electrode binding polymers is provided. A process is also disclosed for mixing specific actinic or EB radiation curable chemical precursors with electrode solid particles, application of the mixture to an electrode current collector, followed by the application of actinic or EB radiation to the current collector for curing the polymer, thereby binding the electrode material to the current collector. Lithium ion batteries, electric double layer capacitors, and components produced therefrom are also provided.
An environmentally sound radiation curable coating composition and method of using the coating composition for paper and paperboard substrates are provided. The radiation curable coating composition comprises an acrylate monomer, an acrylate oligomer, a micronized wax, and optionally a photoinitiator. The radiation curable coating composition provides a high moisture vapor barrier while maintaining optical clarity of the coating. Also, radiation curable coating composition readily separates from a recyclable substrate upon exposure to an alkaline solution.
C09K 3/18 - Materials not provided for elsewhere for application to surface to minimize adherence of ice, mist or water theretoThawing or antifreeze materials for application to surfaces
The invention provides an ultraviolet light curable metallic composition, and articles made therewith. The UV-curable metallic compositions provide a high gloss metallic finish, retain the gloss level over storage duration, and maintain press and shelf stability, while maintaining fast cure speeds. The metallic finishes of the instant compositions have gloss above 190 GU measured at 60°.
The present invention relates to a water-based dispersion comprising: a) a water- based medium, b) a dispersing agent, and c) a blend of a thermoplastic polymer and a non-thermoplastic elastomer as a dispersed phase. The present invention also relates to a method for the manufacture of the dispersion as defined above, comprising the steps: (a) providing a homogeneous blend of a thermoplastic polymer and a non- thermoplastic elastomer; and (b) adding alkaline water-based medium to the blend and dispersing the blend in the medium in the presence of a dispersing agent. The dispersion according to the present invention can be used for various purposes, e.g., for the provision of a sealant. The present invention also relates to a lid or a package comprising a sealant derived from a dispersion according to the present invention.
C08L 23/00 - Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bondCompositions of derivatives of such polymers
C08L 101/00 - Compositions of unspecified macromolecular compounds
5.
Actinic and electron beam radiation curable electrode binders and electrodes incorporating same
A process for manufacturing an electrode utilizing electron beam (EB) or actinic radiation to cure electrode binding polymers is provided. A process is also disclosed for mixing specific actinic or EB radiation curable chemical precursors with electrode solid particles, application of the mixture to an electrode current collector, followed by the application of actinic or EB radiation to the current collector for curing the polymer, thereby binding the electrode material to the current collector. Lithium ion batteries, electric double layer capacitors, and components produced therefrom are also provided.