UNSUPERVISED TECHNIQUES FOR IDENTIFYING UNIVARIATE AND MULTIVARIATE ANOMALIES IN SCIENTIFIC INSTRUMENT RESULTS WITHIN A LABORATORY INFORMATION MANAGEMENT SYSTEM
FISHER SCIENTIFIC COSTA RICA SOCIEDAD DE RESPONSABILIDAD LIMITADA (Costa Rica)
THERMO ELECTRON LIMITED (United Kingdom)
Inventor
Rodríguez García, Sebastián Darío
Hardy, David
Abstract
A method of detecting sample anomalies within a laboratory information management system includes obtaining a first result for a sample, processing the first result via a univariate machine learning model, processing a plurality of results for the sample via a multivariate machine learning model in response to the univariate machine learning model generating a normal output for the first result, and flagging, within the laboratory information management system, the sample for rejection processing in response to the multivariate machine learning model generating an abnormal output for the plurality of samples. The first result represents a first type of result, the univariate machine learning model is trained using unsupervised machine learning, the plurality of results includes the first result, each of the plurality of results represents a different type of result for the sample, and the multivariate machine learning model trained using unsupervised machine learning.
G01N 35/00 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor
2.
UNSUPERVISED TECHNIQUES FOR IDENTIFYING UNIVARIATE AND MULTIVARIATE ANOMALIES IN SCIENTIFIC INSTRUMENT RESULTS WITHIN A LABORATORY INFORMATION MANAGEMENT SYSTEM
FISHER SCIENTIFIC COSTA RICA SOCIEDAD DE RESPONSABILIDAD LIMITADA (Costa Rica)
Inventor
Hardy, David
Rodriguez Garcia, Sebastian Dario
Abstract
A method of detecting sample anomalies within a laboratory information management system includes obtaining a first result for a sample, processing the first result via a univariate machine learning model, processing a plurality of results for the sample via a multivariate machine learning model in response to the univariate machine learning model generating a normal output for the first result, and flagging, within the laboratory information management system, the sample for rejection processing in response to the multivariate machine learning model generating an abnormal output for the plurality of samples. The first result represents a first type of result, the univariate machine learning model is trained using unsupervised machine learning, the plurality of results includes the first result, each of the plurality of results represents a different type of result for the sample, and the multivariate machine learning model trained using unsupervised machine learning.
A method of analyzing a sample imaged by electron backscatter diffraction. The method comprises identifying a plurality of Kikuchi bands in an electron backscatter diffraction image of a position on the sample. The method further comprises forming, for each identified Kikuchi band, a respective vector representation of said Kikuchi band based at least in part on an estimate of the position on the sample. A configuration of the sample is determined by identifying a particular set of expected vector representations from a plurality of sets of expected vector representations as matching the vector representations of the plurality of identified Kikuchi bands.
A removably insertable detector module for a spectroscope. An example microscope system includes a microscope plate, a plurality of posts fix-mounted to the microscope plate, and a detector module removably mounted to the microscope plate. The posts align the detector module with respect to the microscope plate. The detector module includes a detector base plate, a detector fix-mounted on the detector base plate, and an optical element fix-mounted on the detector base plate. The optical element is configured to receive a light and direct the light to the detector.
Disclosed herein are scientific instrument utilization tracking systems, as well as related methods, computing devices, and computer-readable media. For example, in some embodiments, a method of tracking utilization of a scientific instrument may include: receiving, at a computing system, first data from a power sensor associated with the scientific instrument, wherein the power sensor monitors power consumption by the scientific instrument; generating, by the computing system based on the first data, multiple power consumption ranges associated with corresponding operational states of the scientific instrument; receiving, at the computing system, second data from the power sensor associated with the scientific instrument; and outputting, by the computing system, indications of the operational states over time of the scientific instrument based on the second data and the power consumption ranges.
Apparatus can include an input aperture configured to provide an input beam, primary optics configured to collimate the input beam, a grism situated to receive the collimated input beam and to produce a wavelength dispersed beam, and secondary optics configured to receive and direct the wavelength dispersed beam to a detector. Primary optics can include a primary reflector including an off-axis parabolic mirror, wherein the off-axis parabolic mirror is configured to produce the collimated input beam. Secondary optics can include a first secondary reflector and a second secondary reflector, wherein the first secondary reflector is situated to receive and reflect the wavelength dispersed beam to the second secondary reflector and the second secondary reflector is situated to receive and direct the wavelength dispersed beam to the detector.
Methods and systems for detecting a sample via optical pathways are described herein. In one aspect, a light detection system can include: a first optical pathway configured to direct emissions from an interrogation site to a first detector; a second optical pathway configured to direct emissions from the interrogation site to a second detector; and an automated switching module configured to receive a signal that induces the automated switching module to switch between (i) a first state that directs emissions from the interrogation site to the first optical pathway or a second state that directs emissions from the interrogation site to the second optical pathway and (ii) the other of the first state and the second state.
Apparatus can include an input aperture configured to provide an input beam, primary optics configured to collimate the input beam, a grism situated to receive the collimated input beam and to produce a wavelength dispersed beam, and secondary optics configured to receive and direct the wavelength dispersed beam to a detector. Primary optics can include a primary reflector including an off-axis parabolic mirror, wherein the off-axis parabolic mirror is configured to produce the collimated input beam. Secondary optics can include a first secondary reflector and a second secondary reflector, wherein the first secondary reflector is situated to receive and reflect the wavelength dispersed beam to the second secondary reflector and the second secondary reflector is situated to receive and direct the wavelength dispersed beam to the detector.
A spectrograph includes a base, a first optic mounted with respect to the base, a second optic mounted with respect to the base, and a third optic mounted with respect to the base. A first relative position between the first optic and the second optic is adjustable about a first pivot axis. A second relative position between the second optic and the third optic is adjustable about a second pivot axis independently from the adjustability of the relative position between the first optic and the second optic. The second pivot axis is substantially coincident with the first pivot axis, and a distance between the third optic and the second optic is fixed during adjustment of the second relative position.
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
Analytical instrument systems, components, and methods for stabilizing discharge formation are described. A spark gap device includes a first planar coil, defining an axis normal to a coil plane and defining a first aperture substantially centered about the axis. The spark gap device includes a second planar coil, offset from the first planar coil along the axis and substantially parallel with the coil plane, the second planar coil defining a second aperture substantially centered about the axis. The spark gap device also includes a conductive element disposed in the first aperture and substantially aligned with the axis.
G01N 21/67 - Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
Computer-implemented image processing methods with a computer processor and computer memory, comprise accessing, from the computer memory, a non-toroidal beam image component comprising a set of pixel intensities across an imaging area and a toroidal beam image component comprising a set of pixel intensities across the imaging area, scaling, with the computer processor, an image intensity of at least one pixel of one of the non-toroidal or toroidal beam image components by a ratio between a peak non-toroidal beam imaging pixel intensity across the imaging area and a peak toroidal beam imaging intensity across the imaging area to produce a scaled image intensity, and determining a difference between the scaled image intensity of the at least one pixel of the non-toroidal or toroidal image components and an image intensity of at least one pixel of the other of the non-toroidal or toroidal image components to form at least a portion of an image.
Interfering internal beams can be used to generate an internal reference interferogram. This interferogram can be used to compensate for changes in FTIR instrument performance in response to variable environmental conditions or other instrument variations. Acquisition of such internal interferograms can be done during, after, or prior to acquisition of actual sample data.
An optical measurement system measurement system for examining a sample. The measurement system comprises an internally reflective element, a stage, an optical assembly, a chassis, and a sensor. The internally reflective element has a contact surface. The stage is positioned below the internally reflective element. The stage and the internally reflective element are configured to apply a force to the sample. The optical assembly comprises a light source and a light detector. The optical assembly is configured to scan the sample by directing source light from the light source towards the contact surface and detecting source light optically interacting with the contact surface by the light detector. The chassis is configured to support the optical assembly and the internally reflective element. The sensor is mounted to the chassis and configured to detect the force applied to the sample by the internally reflective element and the stage.
G01N 21/3563 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solidsPreparation of samples therefor
G01L 1/22 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
15.
SYSTEMS AND METHODS FOR ANALYZING MICROVOLUME SAMPLE
Systems and methods for analyzing a liquid sample. One system includes a first surface including at least a part of a first electrode and a second surface including at least a part of a second electrode. The second surface is positioned opposite the first surface for holding a microvolume liquid sample between the first surface and the second surface by surface tension. The system also includes an electronic processing unit electrically coupled to at least one of the first electrode and the second electrode for receiving electrical signals from the liquid sample to measure an electrochemical property of the liquid sample.
Systems and methods under the present disclosure can provide communication between instruments or resources at multiple locations. One example is a system of interconnection for various types of assets at multiple laboratories in different locations. Assets, devices, resources, or services at a location can multicast a beacon identifying itself. Verification of the asset, etc., can be done by communicating with a URI associated with that asset. Authentication of assets can be token-based to enable communication. Proxy servers at all or some of the locations can manage authentication and communication between locations and between assets. Tunnels can be implemented between different locations to help ensure secure communication.
Disclosed herein are various systems and methods for optical emission spectroscopy. In some examples a substrate can be formed from conductive layers separated by a dielectric layer, the substrate having at least one recess therein, and the recess having an aperture therethrough. A chamber then encloses the area over the recess, the chamber including chamber walls, a gas inlet, and a gas outlet to allow a gas to fill the chamber. An arc is then created across the substrate using the conductive layers. The arc may form a plasma using the gas inside the chamber. The plasma then ablates a surface of a specimen, generating photons that can then be analyzed by a spectrometer.
G01N 21/25 - ColourSpectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
G01N 21/67 - Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
18.
Microcavity Plasma Array for Optical Emission Spectroscopy
Disclosed herein are various systems and methods for optical emission spectroscopy. In some examples a substrate can be formed from conductive layers separated by a dielectric layer, the substrate having at least one recess therein, and the recess having a aperture therethrough. A chamber then encloses the area over the recess, the chamber including chamber walls, a gas inlet and a gas outlet to allow a gas to fill the chamber. An arc is then created across the substrate using the conductive layers. The arc may form a plasma using the gas inside the chamber. The plasma then ablates a surface of a specimen generating photons that can then be analyzed by a spectrometer.
G01N 21/71 - Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
An absolute transmission accessory for a spectrometer. One example spectrometer system includes a base plate, a light source configured to transmit light, and an interferometer mounted to the base plate. The interferometer receives the light from the light source and output modulated light. The spectrometer system includes a first optical element configured to receive the modulated light and direct the modulated light, and a second optical element configured to receive the modulated light and focus the modulated light to a sample compartment. The spectrometer system includes a detector compartment including one or more detectors, the detector compartment configured to receive light from the sample compartment. The spectrometer system includes a sample holder coupled to the base plate. The modulated light is directed to the sample holder, and light exiting the sample holder is directed through the sample compartment and to the detector compartment via the second optical element.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
20.
POINT CLOUD FOR SAMPLE IDENTIFICATION AND DEVICE CONFIGURATION
Scientific instrument support systems and related methods, computing devices, and computer-readable media for aligning scientific instruments. The method includes, generating, with a first scientific instrument, a first point cloud representative of a sample, wherein the first point cloud is in an n-dimensional space and n is an integer, and generating, with a second scientific instrument different from the first scientific instrument, a second point cloud representative of the sample, wherein the second point cloud is in an m-dimensional space, different from the n-dimensional space associated with the first point cloud and wherein m is an integer. The method includes generating an offset between the first point cloud and the second point cloud using a transformation relating the n-dimensional space to the m-dimensional space, and aligning an output of the second scientific instrument with an output of the first scientific instrument based on the offset.
System and methods for spectrophotometers are described that can utilize ferrules configured to hold a sample test droplet therebetween via surface tension. Light sources in the systems can shine a light on the test droplet and an output of reflected or refracted light can be measured, which can assist in various testing and analysis procedures. Nanoscale or microscale structures can be incorporated on the ferrules to create hydrophobic or superhydrophobic surfaces. This helps prevent test droplets from wetting the ferrules surfaces and helps prevent polluting or mixing of test materials. The ferrules can therefore achieve certain self-cleaning capabilities and test results are more accurate.
System and methods for spectrophotometers are described that can utilize ferrules configured to hold a sample test droplet therebetween via surface tension. Light sources in the systems can shine a light on the test droplet and an output of reflected or refracted light can be measured, which can assist in various testing and analysis procedures. Nanoscale or microscale structures can be incorporated on the ferrules to create hydrophobic or superhydrophobic surfaces. This helps prevent test droplets from wetting the ferrules surfaces and helps prevent polluting or mixing of test materials. The ferrules can therefore achieve certain self-cleaning capabilities and test results are more accurate.
H01J 49/04 - Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locksArrangements for external adjustment of electron- or ion-optical components
There is described a method of determining a chemical composition of a sample using electron spectroscopy, the method comprising: ablating material from an area on a surface of a sample by irradiating the area with one or more pulses of a laser; irradiating at least part of the area with an excitation beam of electrons or electromagnetic radiation; measuring intensities and energies of electrons emitted from the at least part of the area of the sample as a result of the excitation beam; and repeating the steps of: ablating material, irradiating with the excitation beam, and measuring intensities and energies, to determine a quantitative surface depth profile of the chemical composition of at least part of the sample. There is also described an electron spectroscopy apparatus for determining a chemical composition of a sample.
Disclosed herein are scientific instrument support systems, as well as related methods, computing devices, and computer-readable media. For example, in some embodiments, a method of supporting spectroscopic calibration may include: generating a base calibration model using data from multiple base spectroscopic instruments, and finetuning the base calibration model using data from a target spectroscopic instrument to generate a target calibration model for use with the target spectroscopic instrument. In some embodiments, the number of wavelengths used in generating the base calibration model and/or the target calibration model may be less than the total number of wavelengths represented in the output of the spectroscopic instruments.
G01J 3/18 - Generating the spectrumMonochromators using diffraction elements, e.g. grating
G01D 18/00 - Testing or calibrating apparatus or arrangements provided for in groups
G01N 21/67 - Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
H01J 49/00 - Particle spectrometers or separator tubes
An embodiment of a phase mask is described that comprises a light blocking layer disposed on a substrate, where the light blocking layer has a number of optically transmissive regions each configured as a first pattern. The first pattern includes two segments that have different phase configurations from each other, and the light blocking layer includes at least three angular orientations of the first pattern.
A beam extraction system is provided. The beam extraction system includes a first focusing optic, a second focusing optic, and an optic relay coupled to the first focusing optic and the second focusing optic. The first focusing optic is configured to form a light beam from light collected from a sample positioned at a focal point of the first focusing optic. The second focusing optic is configured to couple the light beam to a detector. The optic relay provides an optic path for the light beam from the first focusing optic to the second focusing optic.
A beam extraction system is provided. The beam extraction system includes a first focusing optic, a second focusing optic, and an optic relay coupled to the first focusing optic and the second focusing optic. The first focusing optic is configured to form a light beam from light collected from a sample positioned at a focal point of the first focusing optic. The second focusing optic is configured to couple the light beam to a detector. The optic relay provides an optic path for the light beam from the first focusing optic to the second focusing optic.
G01N 23/2251 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by measuring secondary emission from the material using electron or ion microprobes using incident electron beams, e.g. scanning electron microscopy [SEM]
Methods for linearization of photodetector response include establishing one or more static calibration coefficients based on comparison of test photodetector response to a linear reference photodetector. In some examples, dynamic calibration coefficients are determined based on average photodetector signals. In some applications such as FTIR, linearized ratios are obtained with a single calibration coefficient.
Methods and systems for automatically adjusting a sample position in a spectrometer, such as a Fourier-transform infrared (FTIR) spectrometer, are described. The sample may be automatically positioned using an auto-focusing procedure. For example, images including an aperture marker are acquired by directing light towards the sample via an aperture. The sample position may be adjusted based on features extracted from the aperture marker images.
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
A web gauging system and methods of using the web gauging system are described. The web gauging system includes a supercontinuum Laser providing a light beam. A beam expander is configured to expand the light beam and provide an expanded beam to a sample illumination area. A detector unit configured to detect a sample light from the illumination area. A moving web can be placed in the illumination area, where the web gauging system measures parameters of the web.
A microscope for examining a specimen configured to receive a first light source or a second light source. The first light source being configured to emit a first output light through a first pupil, and the second light source being configured to emit a second output light through a second pupil that is different than the first pupil. The microscope comprises a frame, a source objective, and first and second optical assemblies. The first and second optical assemblies are removably connectable to the frame. The first optical assembly comprises a first set of optical elements that are configured to pass the first output light to an imaging pupil of the source objective, and the second optical assembly comprises a second set of optical elements configured to pass the second output light to the imaging pupil.
A web gauging system and methods of using the web gauging system are described. The web gauging system includes a supercontinuum Laser providing a light beam. A beam expander is configured to expand the light beam and provide an expanded beam to a sample illumination area. A detector unit configured to detect a sample light from the illumination area. A moving web can be placed in the illumination area, where the web gauging system measures parameters of the web.
Provided are systems and methods related to hybrid reflective microscope objectives and lens systems used in a spectroscopy system. The objective lens system includes a primary aspheric mirror having a first R-value; and a secondary aspheric mirror having a second R-value smaller than the first R-value, where in the objective lens system has a working distance of at least 20 mm and a numerical aperture of 0.29-0.65, and wherein surfaces of the primary and secondary aspheric mirrors have a non-zero sixth order aspheric parameter.
A measurement system configured to examine a sample. The system comprises an internally reflective element, a contact member, an actuator, an optical assembly, a sensor, and a controller. The contact member and the reflective element are configured to apply a force to the sample. The optical assembly is configured to scan the sample. Whereby prior to the scan, an initial force is applied to the sample, and after the scan, a resulting force is applied to the sample. The sensor is configured to detect the resulting force applied to the sample, and the controller is configured to receive a signal from the sensor indicative of the detected resulting force. The controller is further configured to control the actuator to adjust the force applied to the sample by the contact member and the internally reflective element from the resulting force to the initial force.
G01L 1/22 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
G01N 21/25 - ColourSpectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
35.
Method and apparatus for determining a force applied to a sample during an optical interrogation technique
An optical measurement system measurement system for examining a sample. The measurement system comprises an internally reflective element, a stage, an optical assembly, a chassis, and a sensor. The internally reflective element has a contact surface. The stage is positioned below the internally reflective element. The stage and the internally reflective element are configured to apply a force to the sample. The optical assembly comprises a light source and a light detector. The optical assembly is configured to scan the sample by directing source light from the light source towards the contact surface and detecting source light optically interacting with the contact surface by the light detector. The chassis is configured to support the optical assembly and the internally reflective element. The sensor is mounted to the chassis and configured to detect the force applied to the sample by the internally reflective element and the stage.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01L 1/22 - Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluidsMeasuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
G01N 21/3563 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solidsPreparation of samples therefor
An embodiment of a microscope system is described that comprises a sample stage configured to position a sample; and a spectrometer comprising an interferometer configure to provide a light beam to the sample stage and one or more detectors configured to detect light spectra in response to the light beam, wherein the spectrometer sends a notification to the sample stage after a scan comprising an acceptable measure of quality has been acquired from the detected light spectra at a first location, and the sample stage is further configured to count the notifications and initiate movement of the sample stage to a second location when a count value reaches a pre-determined number.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
A method and apparatus for detection of charged particles in spectroscopy. Charged particles, received from an energy dispersive spectroscopic analyser as a charged particle beam, are accelerated towards a detector. The accelerated charged particles are received at an array of detecting pixels, the array of detecting pixels forming the detector. The charged particles arriving at the detector have a spread in the energy dispersive direction.
An embodiment of a support structure for adjusting the position of a plurality of optical elements is described that comprises a base plate comprising a centering pin, a first translation slot, and a second translation slot; and a translatable plate configured to operatively couple with a plurality of the optical elements and move relative to the base plate, wherein the translatable plate comprises a centering slot configured to engage with the centering pin, a first cam configured to engage with the first translation slot and control movement of the translatable plate along a first axis, and a second cam configured to engage with the second translation slot and control movement of the translatable plate along a second axis.
G02B 7/182 - Mountings, adjusting means, or light-tight connections, for optical elements for prismsMountings, adjusting means, or light-tight connections, for optical elements for mirrors for mirrors
An embodiment of a support structure for adjusting the position of a plurality of optical elements is described that comprises a base plate comprising a centering pin, a first translation slot, and a second translation slot; and a translatable plate configured to operatively couple with a plurality of the optical elements and move relative to the base plate, wherein the translatable plate comprises a centering slot configured to engage with the centering pin, a first cam configured to engage with the first translation slot and control movement of the translatable plate along a first axis, and a second cam configured to engage with the second translation slot and control movement of the translatable plate along a second axis.
Aspects of the disclosure relate to utilizing independently stored validation keys to enable auditing of instrument measurement data maintained in a blockchain. A computing platform may receive, from a first block generator, a first data block comprising first measurement data captured by a first instrument and associated with a sample. Subsequently, the computing platform may receive a first validation key for the first data block calculated from contents of the first data block. Then, the computing platform may store the first data block and the first validation key for the first data block in a blockchain associated with the data management computing platform. Next, the computing platform may send the first validation key for the first data block to a data escrow database system, which may cause the data escrow database system to store the first validation key in a validation keys database.
A method of analyzing a sample imaged by electron backscatter diffraction. The method comprises identifying a plurality of Kikuchi bands in an electron backscatter diffraction image of a position on the sample. The method further comprises forming, for each identified Kikuchi band, a respective vector representation of said Kikuchi band based at least in part on an estimate of the position on the sample. A configuration of the sample is determined by identifying a particular set of expected vector representations from a plurality of sets of expected vector representations as matching the vector representations of the plurality of identified Kikuchi bands.
An embodiment of a shutter assembly is described that comprises a support structure with a number of stations and operatively coupled to a motor configured to translate each of the stations to a position in front of a detector, wherein a first station comprises a first aperture, a first charged particle filter, and a first window; and a second station comprises a second aperture larger than the first aperture, a second charged particle filter, and a second window thinner than the first window.
An embodiment of a shutter assembly is described that comprises a support structure with a number of stations and operatively coupled to a motor configured to translate each of the stations to a position in front of a detector, wherein a first station comprises a first aperture, a first charged particle filter, and a first window; and a second station comprises a second aperture larger than the first aperture, a second charged particle filter, and a second window thinner than the first window.
G21K 1/04 - Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
G21K 1/02 - Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
An embodiment of a charged particle filter is described that comprises a plurality of magnets, each having a surface sloped at an angle relative to a plane defined by a line from a center of a field of view on a detector to the center of a field of view on a platform. In the described embodiment, the sloped surfaces are positioned to form a bore that comprises a magnetic field gradient that is strongest at a first aperture on a side of the bore proximate to the detector.
An embodiment of a charged particle filter is described that comprises a plurality of magnets, each having a surface sloped at an angle relative to a plane defined by a line from a center of a field of view on a detector to the center of a field of view on a platform. In the described embodiment, the sloped surfaces are positioned to form a bore that comprises a magnetic field gradient that is strongest at a first aperture on a side of the bore proximate to the detector.
An embodiment of a phase mask is described that comprises a light blocking layer disposed on a substrate, where the light blocking layer has a number of optically transmissive regions each configured as a first pattern. The first pattern includes two segments that have different phase configurations from each other, and the light blocking layer includes at least three angular orientations of the first pattern.
An embodiment of a phase mask includes a light blocking layer disposed on a substrate, where the light blocking layer has a number of optically transmissive regions each configured as a first pattern. The first pattern includes two segments that have different phase configurations from each other, and the light blocking layer includes at least three angular orientations of the first pattern.
A method and apparatus for detection of charged particles in spectroscopy. Charged particles, received from an energy dispersive spectroscopic analyser as a charged particle beam, are accelerated towards a detector. The accelerated charged particles are received at an array of detecting pixels, the array of detecting pixels forming the detector. The charged particles arriving at the detector have a spread in the energy dispersive direction.
An embodiment of a module system configured to interface with a microscope is described that comprises an input optical fiber configured to provide an excitation light beam from an external light source; dynamic alignment mirrors configured to adjust the position of the beams paths of the excitation light beam on a first plane; a coupling comprising a first end configured to engage with a complementary end, wherein the excitation light reflects off a turning mirror and travels along a beam path on a second plane through an orifice in the coupling; and an output optical fiber for delivering light from a sample to an external detector, wherein the light from the sample travels along the beam path on the second plane through the orifice in the coupling, reflects off the turning mirror and travels along one of the beam paths on the first plane to the output optical fiber.
G02B 26/08 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
Methods and apparatuses are disclosed whereby structured illumination microscopy (SIM) is applied to a scanning microscope, such as a confocal laser scanning microscope or sample scanning microscope, in order to improve spatial resolution. Particular aspects of the disclosure relate to the discovery of important advances in the ability to (i) increase light throughput to the sample, thereby increasing the signal/noise ratio and/or decreasing exposure time, as well as (ii) decrease the number of raw images to be processed, thereby decreasing image acquisition time. Both effects give rise to significant improvements in overall performance, to the benefit of users of scanning microscopy.
Methods and apparatuses are disclosed whereby structured illumination microscopy (SIM) is applied to a scanning microscope, such as a confocal laser scanning microscope or sample scanning microscope, in order to improve spatial resolution. Particular aspects of the disclosure relate to the discovery of important advances in the ability to (i) increase light throughput to the sample, thereby increasing the signal/noise ratio and/or decreasing exposure time, as well as (ii) decrease the number of raw images to be processed, thereby decreasing image acquisition time. Both effects give rise to significant improvements in overall performance, to the benefit of users of scanning microscopy.
G01B 11/25 - Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. moiré fringes, on the object
53.
METHODS AND APPARATUS FOR ELECTRON BACKSCATTER DIFFRACTION SAMPLE CHARACTERISATION
A method of analyzing a sample imaged by electron backscatter diffraction. The method comprises identifying a plurality of Kikuchi bands in an electron backscatter diffraction image of a position on the sample. The method further comprises forming, for each identified Kikuchi band, a respective vector representation of said Kikuchi band based at least in part on an estimate of the position on the sample. A configuration of the sample is determined by identifying a particular set of expected vector representations from a plurality of sets of expected vector representations as matching the vector representations of the plurality of identified Kikuchi bands.
G01N 23/20058 - Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
An embodiment of a method of automatically generating a background measurement in a spectrometer is described that comprises the steps of: collecting a plurality of candidate scans in the spectrometer; determining for each of the plurality of candidate scans if the candidate scan correlates to an orthonormal basis set that is associated with a recent background description; saving each candidate scan that correlates to the orthonormal basis set as a background scan in a scan cache; and generating a new background measurement from a plurality of the background scans stored in the scan cache if a current background measurement is older than a preselected time interval.
An embodiment of a method of automatically generating a background measurement in a spectrometer is described that comprises the steps of: collecting a plurality of candidate scans in the spectrometer; determining for each of the plurality of candidate scans if the candidate scan correlates to an orthonormal basis set that is associated with a recent background description; saving each candidate scan that correlates to the orthonormal basis set as a background scan in a scan cache; and generating a new background measurement from a plurality of the background scans stored in the scan cache if a current background measurement is older than a preselected time interval.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
An image analysis system includes a video camera that collects YUV color images of a liquid sample disposed between a capital and a pedestal, the color images being collected while a light source shines light through an optical beam path between the capital and the pedestal, and a processor adapted to i) obtain from the YUV color images a grayscale component image and a light scatter component image, and ii) obtain at least one binary image of the grayscale component image and at least one binary image of the light scatter component image.
Aspects of the disclosure relate to utilizing independently stored validation keys to enable auditing of instrument measurement data maintained in a blockchain. A computing platform may receive, from a first block generator, a first data block comprising first measurement data captured by a first instrument and associated with a sample. Subsequently, the computing platform may receive a first validation key for the first data block calculated from contents of the first data block. Then, the computing platform may store the first data block and the first validation key for the first data block in a blockchain associated with the data management computing platform. Next, the computing platform may send the first validation key for the first data block to a data escrow database system, which may cause the data escrow database system to store the first validation key in a validation keys database.
Aspects of the disclosure relate to utilizing independently stored validation keys to enable auditing of instrument measurement data maintained in a blockchain. A computing platform may receive, from a first block generator, a first data block comprising first measurement data captured by a first instrument and associated with a sample. Subsequently, the computing platform may receive a first validation key for the first data block calculated from contents of the first data block. Then, the computing platform may store the first data block and the first validation key for the first data block in a blockchain associated with the data management computing platform. Next, the computing platform may send the first validation key for the first data block to a data escrow database system, which may cause the data escrow database system to store the first validation key in a validation keys database.
G06F 21/62 - Protecting access to data via a platform, e.g. using keys or access control rules
G06F 21/64 - Protecting data integrity, e.g. using checksums, certificates or signatures
G06F 21/70 - Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
G06F 21/71 - Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
A laser mount assembly includes a lens holder including a collimating lens. A laser subassembly is positioned adjacent the lens holder and includes a vertical-cavity surface-emitting laser, a thermal electric cooler, and a thermistor. A printed circuit board is positioned adjacent the laser subassembly and includes a plurality of heating components. The heating components heat the area between the lens holder and the laser subassembly.
H01S 5/183 - Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
H01S 5/026 - Monolithically integrated components, e.g. waveguides, monitoring photo-detectors or drivers
H01S 5/02326 - Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
G01K 7/22 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using resistive elements the element being a non-linear resistance, e.g. thermistor
61.
VERTICAL-CAVITY SURFACE EMITTING LASER SUPPORT ASSEMBLY
A laser mount assembly includes a lens holder including a collimating lens. A laser subassembly is positioned adjacent the lens holder and includes a vertical-cavity surface-emitting laser, a thermal electric cooler, and a thermistor. A printed circuit board is positioned adjacent the laser subassembly and includes a plurality of heating components. The heating components heat the area between the lens holder and the laser subassembly.
A stray light reducing apparatus includes a light source and an entrance slit positioned to pass through light from the light source. A first monochromator mirror is positioned to reflect light passed through the entrance slit. A diffractive surface is positioned to receive and diffract light reflected by the first monochromator mirror. A second monochromator mirror is positioned to reflect light diffracted by the diffractive surface. An exit slit is positioned to pass through light reflected by the second monochromator mirror. A cuvette is positioned to pass through light passed through the exit slit. A long-pass interference filter is positioned to receive light from the light source, reflect light that has a wavelength below a selected value, and pass through light having a wavelength above the selected value. A first sample detector is positioned to receive light reflected by the long-pass interference filter.
A stray light reducing apparatus includes a light source and an entrance slit positioned to pass through light from the light source. A first monochromator mirror is positioned to reflect light passed through the entrance slit. A diffractive surface is positioned to receive and diffract light reflected by the first monochromator mirror. A second monochromator mirror is positioned to reflect light diffracted by the diffractive surface. An exit slit is positioned to pass through light reflected by the second monochromator mirror. A cuvette is positioned to pass through light passed through the exit slit. A long-pass interference filter is positioned to receive light from the light source, reflect light that has a wavelength below a selected value, and pass through light having a wavelength above the selected value. A first sample detector is positioned to receive light reflected by the long-pass interference filter.
A diffuse reflectance apparatus includes a housing (58) having a window (56) formed therein, and a diffuse reflectance mirror (52) spaced from the window (56) and having an aperture (50) extending therethrough. A light source (34) provides a beam of light (36). A first mirror assembly (46) is positioned to reflect the beam of light (36) through the aperture (50) such that it passes through the window (56). A second mirror assembly (68) is positioned to reflect scattered light (66) from the concave mirror (52) to a detector (44).
A diffuse reflectance apparatus includes a housing having a window formed therein, and a diffuse reflectance mirror spaced from the window and having an aperture extending therethrough. A light source provides a beam of light. A first mirror assembly is positioned to reflect the beam of light through the aperture such that it passes through the window. A second mirror assembly is positioned to reflect scattered light from the concave mirror to a detector.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
A process of analyzing a sample by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) includes providing a sample having a sample surface within a vacuum chamber, performing a Raman spectroscopic analysis on a plurality of selected areas of the sample surface within the vacuum chamber to map an area of the sample surface comprising the selected areas, the Raman spectroscopic analysis including identifying one or more face in one or more of the selected areas of the sample surface, and performing an X-ray photoelectron spectroscopy (XPS) analysis of one or more selected areas of the sample surface containing at least one chemical and/or structural feature identified by the Raman spectroscopic analysis, wherein the duration of the XPS analysis of a given selected area of the sample surface is longer than the duration of the Raman spectroscopic analysis of that given selected area.
A mirror assembly has one or more axes of motion and includes a mirror that is movable and forms an acute angle with a plane orthogonal to its axis of motion. The mirror assembly may include a first reflective mirror surface in the incoming optical path that is movable and forms an acute angle with a plane orthogonal to its axis of motion, and a second reflective mirror surface in the outgoing optical path that is movable and forms an acute angle with a plane orthogonal to its axis of motion and is moveable in a linear translation to scan the mirror in the interferometer in a way to generate a normal interferogram.
G02B 7/182 - Mountings, adjusting means, or light-tight connections, for optical elements for prismsMountings, adjusting means, or light-tight connections, for optical elements for mirrors for mirrors
G02B 7/198 - Mountings, adjusting means, or light-tight connections, for optical elements for prismsMountings, adjusting means, or light-tight connections, for optical elements for mirrors for mirrors with means for adjusting the mirror relative to its support
A mirror assembly has one or more axes of motion and includes a mirror that is movable and forms an acute angle with a plane orthogonal to its axis of motion. The mirror assembly may include a first reflective mirror surface in the incoming optical path that is movable and forms an acute angle with a plane orthogonal to its axis of motion, and a second reflective mirror surface in the outgoing optical path that is movable and forms an acute angle with a plane orthogonal to its axis of motion and is moveable in a linear translation to scan the mirror in the interferometer in a way to generate a normal interferogram.
G02B 26/08 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
G02B 7/182 - Mountings, adjusting means, or light-tight connections, for optical elements for prismsMountings, adjusting means, or light-tight connections, for optical elements for mirrors for mirrors
A mixing apparatus (10) includes a well plate assembly (12) including a fixed support (30), and a well (14) movable with respect to the fixed support. A fixed sensor mount (18) has a first portion disposed above the well and a second portion disposed within the well. A plurality of electromagnets (26) are operable to move the well plate assembly vertically with respect to the fixed sensor mount and the fixed support.
A mixing apparatus includes a well plate assembly including a fixed support, and a well movable with respect to the fixed support. A fixed sensor mount has a first portion disposed above the well and a second portion disposed within the well. A plurality of electromagnets are operable to move the well plate assembly vertically with respect to the fixed sensor mount and the fixed support.
A mirror assembly has one or more axes of motion and includes a mirror that is movable and forms an acute angle with a plane orthogonal to its axis of motion. The mirror assembly may include a first reflective mirror surface in the incoming optical path that is movable and forms an acute angle with a plane orthogonal to its axis of motion, and a second reflective mirror surface in the outgoing optical path that is movable and forms an acute angle with a plane orthogonal to its axis of motion and is moveable in a linear translation to scan the mirror in the interferometer in a way to generate a normal interferogram.
G02B 7/182 - Mountings, adjusting means, or light-tight connections, for optical elements for prismsMountings, adjusting means, or light-tight connections, for optical elements for mirrors for mirrors
G01J 3/453 - Interferometric spectrometry by correlation of the amplitudes
G02B 26/08 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
A sensing device includes a first substrate having a plurality of TSVs extending therethrough, and a second substrate positioned adjacent the first substrate, with the TSVs being electrically connected to the second substrate. At least one carbon nanotube sensor is positioned on the first substrate. Each of a plurality of contact pads is positioned on the first substrate and on one of the carbon nanotube sensors such that each contact pad is electrically connected to one of the TSVs and the one of the carbon nanotube sensors, and such that an end of the one of the carbon nanotube sensors is embedded in the contact pad.
B82Y 15/00 - Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
G01N 27/12 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluidInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon reaction with a fluid
76.
Sensor device with carbon nanotube sensor positioned on first and second substrates
A sensing device includes a first substrate having a plurality of TSVs extending therethrough, and a second substrate positioned adjacent the first substrate, with the TSVs being electrically connected to the second substrate. At least one carbon nanotube sensor is positioned on the first substrate. Each of a plurality of contact pads is positioned on the first substrate and on one of the carbon nanotube sensors such that each contact pad is electrically connected to one of the TSVs and the one of the carbon nanotube sensors, and such that an end of the one of the carbon nanotube sensors is embedded in the contact pad.
H01L 23/48 - Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads or terminal arrangements
G01N 27/12 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluidInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon reaction with a fluid
H01L 23/00 - Details of semiconductor or other solid state devices
H01L 21/768 - Applying interconnections to be used for carrying current between separate components within a device
H01L 21/56 - Encapsulations, e.g. encapsulating layers, coatings
H01L 23/31 - Encapsulation, e.g. encapsulating layers, coatings characterised by the arrangement
B82Y 15/00 - Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
77.
CARBON NANOTUBE-BASED DEVICE FOR SENSING MOLECULAR INTERACTION
Devices and methods are disclosed having (a) an exposed semiconducting single walled carbon nanotube channel (10) on the surface of a substrate (20), wherein the exposed semiconducting single walled carbon nanotube channel is functionalized with a capture moiety cognate to a target analyte, (b) a source electrode and a drain electrode (50) connceting opposite ends of the exposed semiconducting single walled carbon nanotube channel, and (c) wherein the source electrode and the drain electrode are electrically connected in a manner to detect changes in current through the exposed semiconducting single walled carbon nanotube channel in response to analyte in contact therewith. Preferably the semiconducting carbon nanotube network is modified with pyrene butyric acid.
A spectroscopy system and method in which the optical path following the interferometer includes a Jacquinot stop having an aperture disposed substantially at its focal point. The Jacquinot stop includes a reflective surface substantially non-orthogonal to the longitudinal axis of the path and facing the source of the IR signal containing an interferogram. The aperture passes an inner portion of the incident IR signal, while the reflective surface reflects an outer portion. The reflected outer portion of the incident IR signal, which contains erroneous spectral information due to inherent flaws in the interferometer optics, is thereby effectively removed from the original incident IR signal ultimately used to irradiate the sample, and yet still be made available for use in monitoring background spectra of the sampling optics.
G01N 21/3577 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
80.
Device for providing variable sized aperture for a sample
An apparatus for providing a variable sized aperture for an imaging device includes a first plate having a first plurality of plate apertures extending therethrough and a second plate having a second plurality of plate apertures extending therethrough. A first motor is operably connected to the first plate and a second motor is operably connected to the second plate. The first and second motors are configured to move the first plate and the second plate with respect to one another so as to align any of the first plurality of plate apertures with any of the second plurality of plate apertures to define a plurality of light beam apertures.
Aspects of the present disclosure are directed to a mirror bearing for an interferometer. An example mirror bearing includes a stationary mounting member and a mobile mirror assembly configured for slidable movement relative to the mounting member along its longitudinal axis. The mounting member is configured for rigid attachment to an interferometer body. A bore extends through the mounting member along its longitudinal axis. A drive coil receiving area of the mounting member is configured to hold a drive coil coupled thereto. The mobile mirror assembly includes a tube configured to receive, at one end of the tube, an end of the mounting member. The mobile mirror assembly also includes a mirror coupled to the opposite end of the tube. A drive magnet is disposed within the tube and is configured to be received within the bore of the mounting member when the mirror bearing is in an assembled configuration.
G02B 26/08 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
G02B 7/182 - Mountings, adjusting means, or light-tight connections, for optical elements for prismsMountings, adjusting means, or light-tight connections, for optical elements for mirrors for mirrors
A spectroscopy system and method in which the optical path following the interferometer includes a Jacquinot stop (70) having an aperture disposed substantially at its focal point. The Jacquinot stop includes a reflective surface (74) substantially non-orthogonal to the longitudinal axis of the path and facing the source of the IR signal containing an interferogram. The aperture (72) passes an inner portion of the incident IR signal, while the reflective surface reflects an outer portion. The reflected outer portion of the incident IR signal, which contains erroneous spectral information due to inherent flaws in the interferometer optics, is thereby effectively removed from the original incident IR signal ultimately used to irradiate the sample, and yet still be made available for use in monitoring background spectra of the sampling optics.
Aspects of the present disclosure are directed to a mirror bearing for an interferometer. An example mirror bearing includes a stationary mounting member and a mobile mirror assembly configured for slidable movement relative to the mounting member along its longitudinal axis. The mounting member is configured for rigid attachment to an interferometer body. A bore extends through the mounting member along its longitudinal axis. A drive coil receiving area of the mounting member is configured to hold a drive coil coupled thereto. The mobile mirror assembly includes a tube configured to receive, at one end of the tube, an end of the mounting member. The mobile mirror assembly also includes a mirror coupled to the opposite end of the tube. A drive magnet is disposed within the tube and is configured to be received within the bore of the mounting member when the mirror bearing is in an assembled configuration.
G02B 7/182 - Mountings, adjusting means, or light-tight connections, for optical elements for prismsMountings, adjusting means, or light-tight connections, for optical elements for mirrors for mirrors
An apparatus (19) for providing a variable sized aperture for an imaging device includes a first plate (22) having a first plurality of plate apertures (24) extending therethrough and a second plate (30) having a second plurality of plate apertures (32) extending therethrough. A first motor (20) is operably connected to the first plate and a second motor (26) is operably connected to the second plate. The first and second motors are configured to move the first plate and the second plate with respect to one another so as to align any of the first plurality of plate apertures with any of the second plurality of plate apertures to define a plurality of light beam apertures.
An embodiment of a ruggedized interferometer is described that comprises a light source (210) that generates a beam of light; a fixed mirror (207); a moving mirror (205) that travels along a linear path; a beam splitter (215) that directs a first portion of the beam of light to the fixed mirror and a second portion of the beam of light to the moving mirror, wherein the beam splitter recombines the first portion reflected from the fixed mirror and the second portion reflected from the moving mirror; and a servo control (203) that applies a substantial degree of force to the moving mirror at initiation of a turnaround period, wherein the substantial degree of force is sufficient to redirect the moving mirror traveling at a high velocity to an opposite direction of travel on the linear path.
An embodiment of a ruggedized interferometer is described that comprises a light source that generates a beam of light; a fixed mirror; a moving mirror that travels along a linear path; a beam splitter that directs a first portion of the beam of light to the fixed mirror and a second portion of the beam of light to the moving mirror, wherein the beam splitter recombines the first portion reflected from the fixed mirror and the second portion reflected from the moving mirror; and a servo control that applies a substantial degree of force to the moving mirror at initiation of a turnaround period, wherein the substantial degree of force is sufficient to redirect the moving mirror traveling at a high velocity to an opposite direction of travel on the linear path.
An embodiment of a path length calibration system is described that comprises a swing arm coupled to a first surface; a base coupled to a second surface configured to receive the sample; a position sensor system comprising a first component coupled to the swing arm and a second component coupled to the base, wherein the position sensor system is configured to provide an output voltage when the swing arm is in a down position; and a processor configured to calibrate a zero path length using the output voltage.
G01N 21/27 - ColourSpectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
G01D 5/14 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
89.
Image capture assembly and method for electron back scatter diffraction
The invention relates to an image capture assembly and method for use in an electron backscatter diffraction (EBSD) system. An image capture assembly comprises a scintillation screen (10) including a predefined screen region (11), an image sensor (20) comprising an array of photo sensors and a lens assembly (30). The image capture assembly is configured to operate in at least a first configuration or a second configuration. In the first configuration the lens assembly (30) projects the predefined region (11) of the scintillation screen (10) onto the array and in the second configuration the lens assembly (30) projects the predefined region (11) of the scintillation screen (10) onto a sub-region (21) of the array. In each of the first and second configurations the field of view of the lens assembly (30) is the same.
An embodiment of a calibration element for an analytical microscope is described that comprises a substantially non-periodic pattem of features that exhibit contrast when illuminated by a light beam.
An embodiment of a calibration element for an analytical microscope is described that comprises a substantially non-periodic pattern of features that exhibit contrast when illuminated by a light beam.
A charged particle filter includes a magnetic deflector having a bore along an axis thereof passing through the magnetic deflector from a sample end to a detector end of the magnetic deflector, and through which bore charged particles pass when in use, the magnetic deflector being formed from two magnets positioned around the bore, with a gap between the two magnets, the two magnets each having a linear central section and two ends, each end forming a curved surface, the curved surface having an aspect ratio defined by a height in a range of between one tenth and ten times the gap between the two magnets, and a width in a range of between one tenth and ten times the gap.
H01J 37/00 - Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
H01J 37/09 - DiaphragmsShields associated with electron- or ion-optical arrangementsCompensation of disturbing fields
H01J 37/28 - Electron or ion microscopesElectron- or ion-diffraction tubes with scanning beams
H01J 37/244 - DetectorsAssociated components or circuits therefor
A process of analyzing a sample by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) includes providing a sample having a sample surface within a vacuum chamber, performing a Raman spectroscopic analysis on a plurality of selected areas of the sample surface within the vacuum chamber to map an area of the sample surface comprising the selected areas, the Raman spectroscopic analysis including identifying one or more chemical and/or structural features of the sample surface in one or more of the selected areas of the sample surface, and performing an X-ray photoelectron spectroscopy (XPS) analysis of one or more selected areas of the sample surface containing at least one chemical and/or structural feature identified by the Raman spectroscopic analysis, wherein the duration of the XPS analysis of a given selected area of the sample surface is longer than the duration of the Raman spectroscopic analysis of that given selected area.
The present invention is directed to a spectrophotometer instrument that includes an arm that can swing between a closed position and an open position which is upward and backward of the lower position and wherein the display is moveable between a position behind the arm to a position to a side of the arm. Thus, the features herein provides the instrument user with positioning features to allow for a superior human factors user experience.
A charged particle filter includes a magnetic deflector having a bore along an axis thereof passing through the magnetic deflector from a sample end to a detector end of the magnetic deflector, and through which bore charged particles pass when in use, the magnetic deflector being formed from two magnets positioned around the bore, with a gap between the two magnets, the two magnets each having a linear central section and two ends, each end forming a curved surface, the curved surface having an aspect ratio defined by a height in a range of between one tenth and ten times the gap between the two magnets, and a width in a range of between one tenth and ten times the gap.
A charged particle filter includes a magnetic deflector having a bore (220) along an axis thereof passing through the magnetic deflector from a sample end to a detector end of the magnetic deflector, and through which bore charged particles pass when in use, the magnetic deflector being formed from two magnets (250, 260) positioned around the bore, with a gap (270) between the two magnets, the two magnets each having a linear central section (280, 281) and two ends (285, 286, 295, 296), each end forming a curved or slanted surface (at 285, 286, 295, 296), the curved surface having in some embodiments an aspect ratio defined by a height in a range of between one tenth and ten times the gap between the two magnets, and a width in a range of between one tenth and ten times the gap.