The invention pertains to the use of sophisticated chemical formulation and spectroscopic design methods to select taggants compatible with the 3D print medium that are easily detected spectroscopically but otherwise compatible with the product, structural integrity and stability, and aesthetics. A spectral pattern employs a different chemical or combination of chemicals to alter the formulation of all or some portion of the printed object so that its authenticity can be monitored later using a spectrometer.
B29C 64/112 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
The invention pertains to the use of sophisticated chemical formulation and spectroscopic design methods to select taggants compatible with the 3D print medium that are easily detected spectroscopically but otherwise compatible with the product, structural integrity and stability, and aesthetics. A spectral pattern employs a different chemical or combination of chemicals to alter the formulation of all or some portion of the printed object so that its authenticity can be monitored later using a spectrometer.
B33Y 80/00 - Products made by additive manufacturing
B29C 64/112 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
B22F 10/12 - Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
B22F 10/14 - Formation of a green body by jetting of binder onto a bed of metal powder
B22F 10/39 - Traceability, e.g. incorporating identifier into a workpiece or article
B29K 509/00 - Use of inorganic materials not provided for in groups , as filler
G01N 21/33 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01N 23/223 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
The invention pertains to the use of sophisticated chemical formulation and spectroscopic design methods to select taggants compatible with the 3D print medium that are easily detected spectroscopically but otherwise compatible with the product, structural integrity and stability, and aesthetics. A spectral pattern employs a different chemical or combination of chemicals to alter the formulation of all or some portion of the printed object so that its authenticity can be monitored later using a spectrometer.
The field of the invention pertains to the use of sophisticated spectroscopy methods and spectral patterns to detect chemical taggants in samples. More specifically, the invention pertains to the detection of taggant in a regulated product or precursor, or feedstock. Even more specifically, the invention pertains to the use of a spectral pattern to identify taggant in a regulated product or precursor. In a preferred embodiment, even more specifically, the invention pertains to the use of a spectral pattern in a regulated product or precursor subject to differing tax or tariff treatment based on its source or type.
Multisource fusion of data is used on a handheld device to create a portable analytical verifier, including the ability to verify based on product wrapping or using a re-turned code to check the product or wrapping. Data words are extracted from authentication media by testing to see whether particular taggants are present, using spectroscopic analysis.
G06K 19/06 - Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
G01T 1/161 - Applications in the field of nuclear medicine, e.g. in vivo counting
Multisource fusion of data is used on a handheld device to create a portable analytical verifier, including the ability to verify based on product wrapping or using a returned code to check the product or wrapping. Data words are extracted from authentication media by testing to see whether particular taggants are present, using spectroscopic analysis.
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation
G06K 9/18 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints using printed characters having additional code marks or containing code marks, e.g. the character being composed of individual strokes of different shape, each representing a different code value
A box 14 having a body 13 is used with a transparent flexible bag containing a liquid such as an IV bag. First and second faces 12 are positioned relative to each other. The faces each have therewithin an end or fiber optic port 11 of a respective light path. A light source is optically coupled with the light path of the first face and a spectrometer is optically coupled with the light path of the second face. The light paths are coaxial and are disposed so that the transparent flexible bag is positionable therebetween. The spectrometer is disposed to detect an anomaly in the liquid within the transparent flexible bag, and to annunciate the anomaly to a human user. The box defines a reproducible light path length through the liquid. A caliper 29 having a body 22 may be used in spectrometric analysis of a transparent tube containing a liquid such as a syringe or an IV line. The caliper has finger pads 27 which permit opening the spring-loaded caliper as needed. Rivets 25 provide a pivoting action relative to a pivot structure 21 which can also serve as a distance gauge. Compression spring 24 urges the caliper jaws together at lens locations 26. Lens locations 26 are optically coupled with internal fiber optic lines 28, and thence to external fiber optic connectors 23. A light source is optically coupled with one of the connectors 23 and a spectrometer is optically coupled with the other of the connectors 23.