A circuit includes a primary light emitting diode (LED) string, a secondary LED string, a reference line, and primary and secondary transistors. The primary string includes a voltage drop, and a node disposed between two adjacent LEDs of the primary string. The secondary string is configured in parallel with the primary string. The secondary string has a voltage drop that is less than the primary voltage drop. The reference line is coupled to the node. The primary transistor includes a drain, a gate, and a source. The drain is coupled to a primary string output terminal. The gate is coupled to the reference line, and the source is coupled to a ground. The secondary transistor includes a drain, a gate, and a source. The drain is coupled to a secondary string output terminal. The gate is coupled to the reference line, and the source is coupled to the ground.
H05B 45/34 - Voltage stabilisationMaintaining constant voltage
H05B 45/345 - Current stabilisationMaintaining constant current
H05B 45/46 - Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
H05B 45/48 - Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
B60Q 1/14 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
A signal light device (1) of a motor vehicle with a signal lighting unit (3) that comprises housing (1a) covered by cover (2) and in the housing a carrier (5) secured to the housing (1a) and with its front panel (7) facing the cover (2). The carrier (5) comprises a supporting surface (22) with attach at least one light source (6), a front panel (7) and a thin-walled partition panel (12) situated between the supporting surface (22) and the front panel (7) and at a distance from them. The partition panel (12) comprises an input surface (20) facing the supporting surface (22) and an output surface (21) wherein the supporting surface (22) is fitted with the main reflective surface (11) to reflect light rays (10). The space between the front panel (7) and the output surface (21) and between the supporting surface (22) and the input surface (20) is only filled with air. For each light source (6), the thin-walled partition panel (12) is, in the region situated opposite the light source (6), fitted on its input surface (20) with the first arrangement (24) of the first reflective surfaces (12a) and the first gaps (12c), and on its output surface (21) with the second arrangement (25) of the second reflective surfaces (12b) and the second gaps (12d).
F21S 43/50 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by aesthetic components not otherwise provided for, e.g. decorative trim, partition walls or covers
A light beam forming module, in particular in the vehicle external lighting system, is in the form of a monolithic body formed of a plurality of contiguous cross-sectional segments, each of which includes an entrance surface facing the light source, an exit surface, and a first total internal reflection surface and at least another total internal reflection surface. A first total internal reflection surface is positioned downstream of the entrance surface, and at least one further total internal reflection surface has a shaped optical structure formed thereon.
A monitoring circuit and a method for function monitoring is disclosed where the device includes the input being connected with a first subassembly that detects a frequency range of the status signal, with the first subassembly being connected with a second subassembly to implement a logical signal combination. The second subassembly is connected with a third subassembly generating a delayed output signal. The method compares a frequency fsw of the status signal with a lower first cutoff frequency f1 and an upper second cutoff frequency f2. When the frequency fsw of the status signal is located within the predetermined frequency range, the functional reliability signal is provided with a first voltage level, and when the frequency fsw of the status signal is located outside of the predetermined frequency range, the functional reliability signal is provided with a second voltage level that is different from the first voltage level.
G01R 31/3177 - Testing of logic operation, e.g. by logic analysers
H03H 7/06 - Frequency selective two-port networks including resistors
H03K 19/21 - EXCLUSIVE-OR circuits, i.e. giving output if input signal exists at only one inputCOINCIDENCE circuits, i.e. giving output only if all input signals are identical
5.
Light assembly with a multi-branched light guide device
A multi-branched light guide device for a light assembly includes first, second, and third braches each adapted to internally transmit respective portions of a plurality of lights rays along respective directions. The branches each include a respective outer surface adapted to internally reflect the respective portions in the respective directions. A trunk of the device is connected to the branches, and is adapted to internally transmit the plurality of light rays against the outer surfaces of the branches.
A light assembly includes a substantially closed housing, a light source, a thermoelectric device, and a moisture expulsion device. The housing is defines a chamber, and includes a lens. The light source is adapted to direct light from the chamber and through the lens. The thermoelectric device includes a cold side and a hot side. The cold side is adapted to form condensation from moisture in the chamber. The moisture expulsion device includes a first segment in contact with the hot side and adapted to receive thermal heat from the hot side, and a second segment in contact with the first segment and exposed to an external environment for dissipation of moisture. The second segment is adapted to receive thermal heat from the first segment, and condensate from the cold side.
F21V 29/54 - Cooling arrangements using thermoelectric means, e.g. Peltier elements
F21V 29/83 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
7.
Light assembly including an illuminating utility segment and a visual stimulant segment
A light assembly includes a core, a light source, and a functional layer. The core extends along a centerline, and includes a base end, a distal end, a first side spanning axially between the base and distal ends, and a second side opposite the first side and spanning axially between the base and distal ends. The second side includes an unbinding element axially extending partially between the base and distal ends. The light source is adapted to emit light rays into the core at the base end. The functional layer is laterally spaced from the first side, axially extends partially between the base and distal ends, and is axially aligned to the unbinding element.
A composite lens arrangement for use with a light emitting source directed along an optical axis includes a collimator lens, a beam former lens, a first optical structure, and a member. The collimator lens includes a light collection surface axially opposed to the light emitting source, and an opposite facing light emitting surface. The beam former lens is spaced axially from the light emitting surface, and includes a light collection face axially opposed to the light emitting surface and an opposite light emitting face. The first optical structure is integral to one of the light emitting surface and the light collection face. The member is radially spaced from the optical axis, and extends between, and is attached to, the light emitting surface and the light collection face.
F21S 41/275 - Lens surfaces, e.g. coatings or surface structures
F21S 43/20 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
F21S 41/143 - Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
Communication device of a motor vehicle, a motor vehicle lighting device for the communication device of a motor vehicle and a Car2Car or Car2X communication method for a motor vehicle
The invention relates to a communication device of a motor vehicle (X), comprising an imaging camera (2) of a scene image (11) connected to control electronics (1), to which a DMD (7) is connected, the mirror surface (70) of which is preceded by optics (3), whereby the mirror surface (70) is functionally associated with a secondary imaging unit (5) having an optical sensor (50) adapted to receive a selected part of the light (32) from the scene image (11) reflected by a selected part of the mirrors of the mirror surface (70) of the DMD (7). The DMD (7) is part of the vehicle lighting device (0) in which an illumination unit (4) is arranged towards the mirror surface (70) of the DMD (7), the illumination unit (4) being adapted to illuminate controllably at least a part of the mirror surface (70) of the DMD (7) and to emit the desired light output beam (30).
In addition, the invention relates to a lighting device (0) of a motor vehicle for a communication device of a motor vehicle and a car2car or car2X communication method for a motor vehicle.
H04B 10/112 - Line-of-sight transmission over an extended range
F21S 41/675 - Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
F21S 43/30 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
B60Q 1/30 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating rear of vehicle, e.g. by means of reflecting surfaces
B60R 1/12 - Mirror assemblies combined with other articles, e.g. clocks
B60Q 1/04 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
10.
Lighting device integrating pair of light functions with collimating elements associated with primary light sources and light guiding elements associated with secondary light sources
b) is associated with light guiding elements (3), whereby the collimating elements (4) and the light guiding elements (3) are arranged in a common light guiding body (A), the output of the light beams is situated behind the level (6) of the exit ends of the collimating elements (4) and on the output side of light guiding body (A) a light scattering filter (7) is arranged.
F21S 43/249 - Light guides with two or more light sources being coupled into the light guide
F21S 43/20 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
F21S 43/239 - Light guides characterised by the shape of the light guide plate-shaped
An arrangement for producing a glare-free high-beam for vehicles is disclosed with headlights, which have a plurality of LEDs controllable by an ADB control and regulating unit and that a front camera is provided which is connected with the ADB control and regulating unit and which is designed to transmit information about oncoming and/or preceding vehicles to the ADB control unit, the arrangement being characterized in that the headlights are designed to generate an ADB illumination area asymmetrically only for an area of the own lane and that the headlights are designed to generate for an area of the oncoming lane only a low-beam area and a high-beam area. A method for producing an asymmetrical, glare-free high-beam is also disclosed.
B60Q 1/14 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
F21S 41/663 - Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
The light device comprises an internal chamber (2) that is covered by a translucent cover, which separates the light device from the external surroundings of the motor vehicle; inside the chamber, there is at least one lighting unit (3) whose active area (4) for the exit of light rays (10) from the lighting unit (3) is situated opposite the translucent cover and contains a light-conductive core (15) of an optically transparent material with an associated light unit (7) located opposite the entry area (9) of the light-conductive core (15) to emit light rays (10) into the body (14) of light-conductive core (15). Between the light-conductive core (15) and the translucent cover there is a functional layer (23) configured to focus the beams of light rays (10) that exit its surface averted from the light-conductive core (15) in a predetermined direction. The light device comprises a technological layer (24) that is configured for a total reflection of the light rays (10), which is in contact with the top surface (17) of the light- conductive core (15).
F21S 43/20 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
F21S 43/40 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
A vehicle lighting device includes an elongated light guide, a reflector, and a volumetric diffuser. The elongated light guide is provided with a non-circular profile that is swept along an elongated spline curve that closely follows a shape of a vehicle's lamp compartment. Light propagates along the length of the light guide by the principal of total internal reflection and is directed towards the diffuser via prismatic optics. The reflector forms a channel around the light guide and redirects scattered light towards the volumetric diffuser. The light guide and reflector together illuminate the volumetric diffuser surface which transmits light into a beam pattern to provide a uniformly lit lighting device.
F21S 43/237 - Light guides characterised by the shape of the light guide rod-shaped
F21S 43/20 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
F21S 43/249 - Light guides with two or more light sources being coupled into the light guide
F21S 43/40 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
F21S 43/245 - Light guides characterised by the emission area emitting light from one or more of its major surfaces
A lighting device includes a housing, the housing comprising an opening. The lighting device also comprises a lens operably disposed in the opening, the lens having an outer viewable face and an opposed inner face, the lens comprising an integrally formed axially-extending light guide, the light guide comprising a light inlet end, a light outlet comprising a portion of the outer viewable face, and a light transmission portion, the light transmission portion comprising a light reflecting structure disposed on the inner face. The lighting device also includes a light source, the light guide configured to receive light rays from the light source into the light inlet end, transmit the rays via internal reflectance along light transmission portion to the light reflecting structures where they are reflected outwardly away from the lighting device in a principal direction through the outer viewable face.
A lighting system for automobiles is proposed which includes a laser light source emitting a primary laser light bundle within a solid angle area around a beam direction, a photoluminescence element positioned within the emitted primary light beam, and a protective element that protects against stray laser rays. The photoluminescence element is configured to absorb the laser rays impinging on said element and by means of the photoluminescence to radiate secondary light rays. The lighting system includes a protection system with a protective element of an elongated shape having a first end and a second end, wherein the first end of the protective element is positioned within the beam direction of the primary light beam and downstream of the photoluminescence element.
F21S 41/14 - Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
F21S 45/47 - Passive cooling, e.g. using fins, thermal conductive elements or openings
F21S 41/20 - Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
F21V 25/04 - Safety devices structurally associated with lighting devices coming into action when lighting device is disturbed, dismounted, or broken breaking the electric circuit
F21V 25/10 - Safety devices structurally associated with lighting devices coming into action when lighting device is over-loaded, e.g. thermal switch
16.
Arrangement and method for controlling a plurality of light-emitting diodes which are connected in series
An arrangement and a method for controlling a plurality of light emitting diodes which are connected in series to attain uniform distribution of a total current to several series connections, LED chains, connected in parallel to each other wherein circuitry-related expenditure and power losses occurring during the control process are minimized, include a first reference voltage generating unit and a second reference voltage generating unit, wherein a outlet of the first reference voltage generating unit is connected to a first and a second control circuit, and an outlet of the second reference voltage generating unit is connected to the second and the first control circuit, and an outlet of the first control circuit is connected to a control inlet of the first controllable semiconductor switch, and an outlet of the second control circuit is connected to a control inlet of the second controllable semiconductor switch.
A lighting device for a motor vehicle includes a light source for sending out a light beam. The lighting device also includes a lightguide of elongated shape made of a plastic, primarily transparent material for guiding the light beam, while a portion of a mantle of the lightguide forms an exit surface for emergence of rays of light of the light beam, wherein another portion of the mantle of the lightguide opposite the exit surface is at least partly provided with a diffuse means formed by a nontransparent coating or foil pressed against the mantle of the lightguide, or joined to a diffuse means of the plastic primarily nontransparent material in the process of injection molding of the plastic.
A light module for a motor vehicle is disclosed. The light module includes a light source and a reflecting unit. The light module also includes an optical waveguide, wherein the waveguide is formed by a plate-shaped body having an L-shaped cross section, the light-reflecting unit comprises a reflector arranged in front of a shorter input part of the waveguide, and wherein at a place where a shorter inlet part of the waveguide passes into a longer outlet part of the waveguide, an angled surface is provided for total reflection of light passing through the shorter inlet part of the waveguide to the longer outlet part of the waveguide, wherewith a bottom area and an adjacent face of the outlet part of the waveguide are provided with a white coating.
G02B 6/04 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
19.
Fixing system for lighting fixture parts, especially automobile lights
A fixing system for lighting fixture parts, especially the lights of an automobile, includes a thermoplastic outer lens (2), which is installed in a thermoplastic encircling housing (3) by means of a sealing adhesive (4) and secured by fastening elements. The fixing element is a brad pin (1) which is shot through a groove (31) of the encircling housing (3) and a lug (21) of the outer lens (2), with a profile in the shape of a circle flattened at least at two diametrically opposite places, having a longitudinally smooth brad pin shank (14) along its entire length, which is covered by an adhesive (112) to hold the brad pins (1) together.
F21V 17/10 - Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
Feeding device for a geometrically closed lightguide (1) of the signal lamps of motor vehicles placed on both sides of the vehicle comprising a light feeder (4) and a geometrically closed lightguide (1). The two parts are joined and form a single plastic molding. A prism-shaped cavity (9) with total internal light reflection for a uniform light distribution at both sides of the enclosed lightguide (1) is formed at the site of their joint. A semi-transparent insert (16) is inserted in the prism-shaped cavity (9), made of material with a precise ratio of transparent and cloudy components to control the amount of unwanted light arising on the planar surfaces (10;11) of the prism-shaped cavity (9) with total internal light reflection.
A signal lamp for a front and rear lighting of a vehicle includes at least one light source for emitting light, wherein the at least one light source is hidden from view; a reflector for reflecting the light emitted by the at least one light source away from the vehicle; and at least one light guide disposed between the reflector and a cover of the signal lamp, the at least one light guide having a first end and a second end, wherein the first end is disposed adjacent the at least one light source and the second end is located adjacent a focus point of the reflector.
A light guide module with adjustable lighting of a contour surface is composed of light sources and a light guide. The light guide is composed of a primary part, a Y-shaped branch, and a secondary part with a contour surface. The supporting surface of the Y-shaped branch of the light guide is composed of a system of directional optical elements, is of prismatic shape, conical shape, or a combination thereof, and has a vertex on the optical axis of the primary part of the light guide.
The present invention relates to a method for operating a predictive adaptive front lighting for a vehicle with headlamps and a controller. The method includes the steps of receiving a vehicle position; identifying a map location of the vehicle; determining a most likely path of the vehicle based on the map location; locating a target point on the most likely path of the vehicle; adaptively changing a distance between the vehicle and the target point; calculating a desired swivel angle for the vehicle headlamps based on the most likely path of the vehicle; and swiveling the headlamps according to the desired swivel angle.
A lightguide module having a linear collimator produced from optically transparent material, a toroidal lens produced from optically transparent material, and a light source, wherein the toroidal lens is disposed between the linear collimator and the light source, at the exit of the linear collimator are found scattering elements, and wherein a light-emitting part of the light source is directed toward an entry surface of the toroidal lens and an exit surface of the toroidal lens is directed toward entry surfaces of the linear collimator. The light source may be a light-emitting diode and the toroidal lens may be a Fresnel type lens.
The signal light of mirror type consists of a light source (1), a primary optical component (2), a secondary optical component (3), a tertiary optical component (4), one or more internal glasses (5), a cover glass (6) and an optical filter (7), characterized in that the light put out by the light source (1) is focused by the primary optical component (2) on the secondary optical component (3), and scattering elements, which are on the primary optical component (2) or on the secondary optical component (3) or on the primary optical component (2) and the secondary optical component (3), after passing through the optical filter (7) are projected onto the tertiary optical component (4), while the tertiary optical component (4) is formed by one or more smooth surfaces of a mirror type, and the image of the scattering elements is further distributed by the tertiary optical component (4) and passes through the one or more internal glasses (5) and the cover glass (6).
A light pipe having substantially uniform brightness along a length thereof is disclosed. The light pipe includes a first end for receiving a plurality of light rays, a reflective portion for directing the received light rays in a pre-determined internal light pattern, wherein the reflective portion includes a plurality of reflective elements, and an emitting portion for emitting the light rays in a pre-determined light distribution pattern.
An automotive headlamp assembly having a closed-loop cooling circuit. The headlamp assembly includes a housing cooperating with a transparent lens cover to define a chamber. At least one light source is located within the chamber. The cooling circuit has at least one cold plate thermally coupled to the light source. A radiator is fluidly coupled to the cold plate by a plurality of tubes. The tubes are oriented at least partially upwardly and configured to circulate a fluid through the cooling circuit as a result of heating and cooling of the fluid therein.
A light guide includes a body having an elongate shape and a plurality of light-reflecting faces and light-emitting faces extending along the body. The light-reflecting faces extend in a stepped fashion along the body in the direction of a longitudinal axis of the light guide and are configured to reflect light rays by the principle of total internal reflection. Each light-emitting face is disposed along the body opposite a corresponding light-reflecting face. Each light-emitting face is configured to emit light reflected by the corresponding light-reflecting face. The light-emitting faces are also disposed on the body in a stepped fashion. Steps of the light-emitting faces correspond to steps of the light-reflecting faces. In another aspect, the light-reflecting faces are separated by stepped-down faces. The stepped-down faces are oriented at a stepped-down angle in the range of about 1 and 10 degrees with respect to the longitudinal axis of the light guide.
G02B 6/42 - Coupling light guides with opto-electronic elements
G02B 6/10 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
A lighting system and a method for providing a lighting pattern are disclosed, wherein the lighting system and method minimize non-uniform color and intensity in the lighting pattern, offers unique styling features, and provides design flexibility for the LED package and associated heatsinking devices. The lighting system including a light source, a first light bending device disposed adjacent the light source and adapted to receive light rays emitted from the light source and direct the light rays in a first desired lighting pattern, and a second light bending device disposed around the first light bending device, wherein the optical device is adapted to receive the directed light rays from the first light bending device and direct the light rays in a second desired lighting pattern.
A lens has a main body for use with at least one light source. The main body has a light-emitting face, a light-collecting face disposed opposite the light-emitting face, and a plurality of focal points, the latter of which form a focal ring. A central axis extends through the light-collecting face and the light-emitting face. The main body is substantially radially symmetrical about the central axis and the focal ring extends around the central axis of the main body of the lens.
A lens for use with a light emitting source is provided. The lens has a main body with a light-collecting face and a light-emitting face and which defines an optical axis extending through the centers of these two faces. A pocket for receiving light from the light source is defined in the light-collecting face by an inner axially-facing surface surrounded by an inner radially-facing surface. The inner axially-facing surface is concave and has a spherical shape. The inner radially-facing surface has a non-spherical, tapered shape and extends between the axially-facing surface and an open end of the pocket. A light assembly incorporating the lens includes a light-emitting diode.
A system for predictive front lighting of a vehicle. The system includes a first and second headlamps, a first and second swivel mechanisms and a controller. The first and second headlamps project a beam pattern for illumination of the vehicle path. The controller receives vehicle position data, for example from a GPS system, and accesses a map database to identify a map location of the vehicle. The controller further analyzes the map to determine a most likely path of the vehicle based on the map location and other vehicle heading parameters. The controller then calculates the desired swivel angle of the first and second headlamps based on the most likely path of the vehicle, and the first and second swivel mechanisms manipulate the first and second headlamps to accordingly change the swivel angle of the headlamps.
A system for predictive front lighting of a vehicle. The system includes at least two headlamps, at least two swivel mechanisms and a controller. The first and second headlamps project a beam pattern for illumination of the vehicle path. The controller receives vehicle position data, as well as, data regarding a most likely path and a secondary path of the vehicle. The controller then calculates the desired swivel angle of the headlamps based on the most likely path of the vehicle and the secondary path of the vehicle, and the swivel mechanisms respectively manipulate each of the headlamps to accordingly change alignment of the headlamps based on the swivel angle for each of the of the headlamps.
B60Q 1/06 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
An illuminating device has a light pipe that is elongate in shape and has a light-emitting face running in the direction of a longitudinal axis. A light-reflecting face is disposed opposite the light-emitting face, and the light-reflecting face has a plurality of prismatic cuts. Each prismatic cut includes a front face oriented at an angle B from a normal axis, the normal axis being 90 degrees from the longitudinal axis of the light pipe. The angle B is in the range of about 5 degrees to about 45 degrees and is such that it allows light to refract through at least one prismatic cut and then be internally reflected.
A light guide and module for motor vehicles that directs light generally along a horizontal axis. The module includes an array of light sources, an array of reflectors and a light guide. The light guide defines a body having opposed upper and lower walls. Formed in the lower wall is at least one prismatic structure having a reflecting surface oriented to reflect light based the principle of total internal reflection and to redirect light toward the upper wall. Formed in the upper wall is at least one decoupling prism element. The decoupling prism elements corresponding in number to the prismatic structures and are located in the upper wall so as to receive redirected light from its corresponding prismatic structures. The decoupling prism element includes a second reflecting surface that reflects light redirected from the first reflecting surface. This second reflecting surface reflects light toward an output surface of the decoupling prism element based on the principle of total internal reflection and defines a vertical spread of light. With the present invention, light emitted from the output surface of the decoupling prism element can be directed generally along the horizontal axis when the upper surface is oriented significantly less than 90° relative to the horizontal axis.
A projector assembly having a light source and a reflector body positioned proximately to the light source for reflecting light forward along an axis of the projector assembly. Mounted to the reflector body is a lens. The lens is in front of and at a distance from the light source to focus the light into a beam pattern. An actuator is mounted to the reflector body and includes a pair of rotatable shafts extending from opposing ends along an axis that is perpendicular to and below the axis of the projector assembly. A light shield is mounted onto the rotatable shafts of the actuator and is rotatable between a first position, wherein substantially all of the light below the axis of the projector assembly is blocked, and a second position, wherein at least a portion of the light below the axis of the projector assembly is allowed to project forward through the lens.
B60Q 1/14 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
B60Q 1/00 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
F21V 17/02 - Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages with provision for adjustment
A near field lens for an automotive light assembly which has a reduced thickness. Generally, the near field lens includes a main body of light transmitting material. A pocket is formed in the main body for receiving light from a light source. The pocket is defined by an inner radially facing surface and an inner axially facing surface. The inner radially facing surface is structured to reduce the thickness of the lens.
A headlamp assembly for a motor vehicle including a lens and a housing that cooperate to define an inner chamber that is generally isolated from the atmosphere. A heat sink includes a fin portion that extends from the inner chamber so as to be exposed to ambient air. A light source is located within the inner chamber and is supported on a base portion of the heat sink. The heat sink conducts heat from the light source to air located exterior of the chamber.
A light assembly and reflector are provided for redirecting light from a light source in a motor vehicle. The reflector generally includes a first parabolic trough, a second parabolic trough, and third trough. The first and second parabolic troughs define first and second trough axes. The third trough has a third trough axis. The first and second parabolic troughs are positioned on opposing sides of the third trough, and the first and second trough axes are angled relative to the third trough axis. In this manner, the reflector collects and reflects a sufficient amount of light while providing control over the beam pattern spread, particularly in the horizontal direction, whereby a single LED may be employed such that constraints imposed by heat dissipation are significantly reduced.