A respiratory treatment device having an inlet configured to receive exhaled air into the device, an outlet configured to permit exhaled air to exit the device, a valve moveable in response to a threshold exhalation pressure at the inlet between a closed position where the flow of air from the inlet to the outlet is restricted, and an open exhalation position where the flow of air from the inlet to the outlet is less restricted, and a valve brace configured to support the valve, wherein a position of the valve brace relative to the valve is selectively adjustable to increase or decrease the threshold exhalation pressure.
A respiratory treatment device comprising at least one chamber, a chamber inlet configured to receive air into the at least one chamber, at least one chamber outlet configured to permit air to exit the at least one chamber, and a flow path defined between the chamber inlet and the at least one chamber outlet. A restrictor member positioned in the flow path is moveable between a closed position, where a flow of air along the flow path is restricted, and an open position, where the flow of air along the flow path is less restricted. A vane in fluid communication with the flow path is operatively connected to the restrictor member and is configured to reciprocate between a first position and a second position in response to the flow of air along the flow path.
A medication delivery system includes a chamber housing defining an interior volume. The chamber housing has an inlet adapted to receive a dosage of medicament and an outlet spaced apart from the inlet. The inlet and outlet are in fluid communication with the interior volume. A flow channel is in fluid communication with the interior volume. A dosage indicator is translatable in the flow channel from a pre-inhalation position to a complete dosage position, wherein a positioning of the dosage indicator in the complete dosage position indicates a complete administration of the dosage of medicament through the outlet. Methods of using and assembling the system are also provided.
An indicating device includes a mechanical dose counter adapted to count the number of doses that have been dispensed from or remain in a container and an electronic module coupled to the mechanical dose counter and adapted to record when the doses have been dispensed from the container. Methods of using and assembling the device are also provided.
G01F 11/00 - Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
An indicating device includes a mechanical dose counter adapted to count the number of doses that have been dispensed from or remain in a container and an electronic module coupled to the mechanical dose counter and adapted to record when the doses have been dispensed from the container. Methods of using and assembling the device are also provided.
G01F 11/00 - Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
Trudell Medical International, Trudell Partnership Holding Limited, an Ontario, Canada corporation and Packard Medical Supply Centre Ltd. an Ontario, Canada corporation (Canada)
Veterinary aerosol delivery apparatus, namely, holding chambers for use with aerosol dispensing devices for the administration of aerosolized pharmaceutical preparations
10.
SURFACE ACOUSTIC WAVE ATOMIZER WITH FLUID DIRECTION AND MIGRATION PREVENTION
A surface acoustic wave (SAW) atomizer system for use in providing a nebulized medicament to a patient is described. The system may include a SAW atomization engine with an atomization region on a substrate that is separated from the interdigitated transducers (IDTs) on the substrate by a fluid barrier that seals off liquid fed into the atomization region from the adjacent IDTs and electrical contacts driving the IDTs.
An indicating device includes a mechanical dose counter adapted to count the number of doses that have been dispensed from or remain in a container and an electronic module coupled to the mechanical dose counter and adapted to record when the doses have been dispensed from the container. Methods of using and assembling the device are also provided.
G06M 1/00 - Design features of general application
A61J 7/00 - Devices for administering medicines orally, e.g. spoonsPill counting devicesArrangements for time indication or reminder for taking medicine
G06M 1/27 - Design features of general application for representing the result of count in the form of electric signals, e.g. by sensing markings on the counter drum
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
44 - Medical, veterinary, hygienic and cosmetic services; agriculture, horticulture and forestry services
Goods & Services
Downloadable computer software application for mobile electronic devices, namely, software for providing information regarding respiratory devices, oscillating positive expiratory pressure (OPEP) devices, inhalers, nebulizers, and holding chambers; Downloadable computer software application for mobile electronic devices for recording, managing, and tracking patient information, symptoms, medications, and treatments, all related to respiratory ailments and diseases; Downloadable computer software application for mobile electronic devices for creating a treatment plan for respiratory ailments and diseases; Downloadable computer software application for mobile electronic devices for communicating with health providers regarding a patient's symptoms, medications, and treatments, all related to respiratory ailments and diseases Providing temporary use of online non-downloadable software for providing information regarding respiratory devices, oscillating positive expiratory pressure (OPEP) devices, inhalers, nebulizers, and holding chambers; Providing temporary use of online non-downloadable software for recording, managing, and tracking patient information, symptoms, medications, and treatments, all related to respiratory ailments and diseases; Providing temporary use of online non-downloadable software for creating a treatment plan for respiratory ailments and diseases; Providing temporary use of online non-downloadable software for communicating with health providers regarding a patient's symptoms, medications, and treatments, all related to respiratory ailments and diseases Providing health information in the field of respiratory ailments and diseases; Medical analysis services for the diagnosis of respiratory ailments and diseases; Web-based health assessment services, namely, a series of health-related questions for response from the user that result in a report that provides health-related information in the form of educational resources and treatment information in the field of respiratory ailments and diseases
A medical device includes a user interface component and an energy harvesting system coupled to the user interface component. The energy harvesting system energy includes a harvesting component, a power storage device connected to the energy harvesting component and an output is coupled to the user interface and operably connected to the power storage device. A method of using the medical device is also provided.
F03D 9/00 - Adaptations of wind motors for special useCombinations of wind motors with apparatus driven therebyWind motors specially adapted for installation in particular locations
H02N 2/18 - Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
A medication delivery system having a holding chamber capable of delivering dosages of medicament from a metered dose inhaler. The holding chamber includes a first housing component having a user interface with an outlet opening and a second housing component having an inlet opening spaced apart from the outlet opening of the first housing component. The first housing component is pivotally connected to the second housing component about a pivot axis.
A mask includes a body having an interior surface defining a cavity shaped to receive a user's nose. An exterior surface of the body is exposed to an ambient environment. The body includes an inlet in fluid communication with the cavity and a one-way exhaust valve in fluid communication between the cavity and the ambient environment. A therapeutic substance dispenser is in fluid communication with the cavity. In one embodiment, a nasal aromatic decongestant is disposed in the therapeutic dispenser. A mask includes an upper nasal cavity separate from a lower oral cavity, with an inlet in fluid communication with only the upper nasal cavity. A medicament delivery assembly, and methods for the use thereof, are also provided.
A tongue strengthening device includes an intraoral bolus simulator having a sensor input component. An extraoral user interface is connected to the intraoral bolus. The intraoral bolus simulator is moveable relative to the extraoral user interface in response to a movement of a user's tongue. The sensor input component is configured to detect a pressure or force applied to the intraoral bolus simulator and/or to detect movement of the intraoral bolus simulator relative to the extraoral user interface.
A61B 5/22 - ErgometryMeasuring muscular strength or the force of a muscular blow
A61H 99/00 - Subject matter not provided for in other groups of this subclass
A63B 23/03 - Exercising apparatus specially adapted for particular parts of the body for the head or neck for face muscles
G16H 20/30 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
TRUDELL MEDICAL INTERNATIONAL, A REGISTERED NAME OF AN ONTARIO PARTNERSHIP COMPRISED OF TRUDELL PARTNERSHIP HOLDINGS LIMITED, AN ONTARIO CORPORATION AND PACKARD MEDICAL SUPPLY CENTRE LTD., AN ONTARIO CORPORATION (Canada)
(1) Medical device, namely, a holding chamber for use with a pressurized metered dose inhaler; a holding chamber for storing and transporting a pressurized metered dose inhaler and for receiving and administering an aerosolized substance dispensed from the pressurized metered dose inhaler.
21.
POSITIVE AIR PRESSURE THERAPY DEVICE, KIT AND METHODS FOR THE USE AND ASSEMBLY THEREOF
A positive air pressure delivery device includes a housing having an inhalation inlet, an inhalation outlet, and an interior cavity in fluid communication with the inhalation inlet and outlet. A pressurized fluid inlet includes an outlet orifice in fluid communication with the interior cavity between the inhalation inlet and outlet. A sound reducer baffle has a convex dome surface positioned downstream of and facing the outlet orifice in a spaced apart relationship therewith. One embodiment of the housings includes a body, an end cap and a baffle insert. In various embodiments, the positive air pressure delivery device may be used in combination with other therapy devices, including an OPEP and pressure indicator. A kit and method of using the device are also provided.
A medication delivery system including a holding chamber having an input and an output end, a backpiece coupled to the input end of the holding chamber and having an electrical circuit and an opening. An MDI incudes an insert portion moveable between an engaged position wherein the insert portion is received in the opening and a disengaged position wherein the insert portion is removed from the opening, and at least one contact that completes the electrical circuit when the insert portion is in the engaged position.
An oscillating positive expiratory pressure system including an oscillating positive expiratory pressure device, an adapter coupled to the device, and a control module coupled to the adapter. The control module provides real time information about the use of the device, and provides feedback and storage of the information to improve the use thereof.
A positive exhalation pressure device to increase the pressure gradient in the airways through the use of a valve housing coupled to a mouthpiece and having a flow passageway communicating between the ambient environment and the oral cavity, and a valve disposed in the housing, wherein the valve is moveable between first and second positions during inhalation and exhalation respectively, wherein the flow passageway is more restricted during exhalation than during inhalation.
A respiratory treatment device including an OPEP (oscillating positive expiratory pressure) mechanism, a Huff Cough mechanism, a user interface, and a conduit leading from the user interface to the OPEP mechanism and the Huff Cough mechanism, wherein air flow through the conduit is selectively directed to the OPEP mechanism and the Huff Cough mechanism.
A respiratory treatment device including an OPEP (oscillating positive expiratory pressure) mechanism, a Huff Cough mechanism, a user interface, and a conduit leading from the user interface to the OPEP mechanism and the Huff Cough mechanism, wherein air flow through the conduit is selectively directed to the OPEP mechanism and the Huff Cough mechanism.
A nebulizer system capable of identifying when activation has occurred and aerosol is being produced. The nebulizer system monitors the inhalation and exhalation flow generated by the patient and communicates proper breathing technique for optimal drug delivery. The nebulizer system may monitor air supply to the nebulizer to ensure it is within the working range and is producing, or is capable of producing, acceptable particle size and drug output rate. When a patient, caregiver or other user deposits or inserts medication into the nebulizer, the nebulizer system is able to identify the medication and determine the appropriate delivery methods required to properly administer the medication as well as output this information into a treatment log to ensure the patient is taking the proper medications. The system is able to measure the concentration of the medication and volume of the medication placed within the medication receptacle, e.g., bowl.
Trudell Medical International, Trudell Partnership Holdings Limited, an Ontario, Canada corporation and Packard Medical Supply Centre Ltd., an Ontario, Canada corporation (Canada)
An oscillating positive expiratory pressure system including an oscillating positive expiratory pressure device having a chamber, an input component in communication with the chamber, wherein the input component is operative to sense a flow and/or pressure and generate an input signal correlated to the flow or pressure, a processor operative to receive the input signal from the input component and generate an output signal, and an output component operative to receive the output signal, and display an output.
A medication delivery system having a holding chamber capable of delivering dosages of medicament from a metered dose inhaler. The holding chamber includes an actuator detector, a flow detector and/or a metered dose inhaler identifier operable to identify the metered dose inhaler coupled to the holding chamber, and a display. In another embodiment, a user interface for administering a medication includes a medication delivery device, a mask portion having a sealing portion with a contact sensor responsive to contact being made with the user, and an indicator in communication with the sensor to provide feedback. In another embodiment, a medication delivery system includes a housing defining a flow channel, a valve disposed in the flow channel moveable between first and second configurations in response to a flow, and wherein the valve comprises an electroactive polymer and is reconfigurable between a first resistance condition and a second resistance condition in response to electrical stimuli.
A61B 5/08 - Measuring devices for evaluating the respiratory organs
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61M 99/00 - Subject matter not provided for in other groups of this subclass
A respiratory delivery care system featuring a mechanical flow indicator movable in response to inhalation and/or exhalation by a user, and an electronic indicator operable in response to an electronic signal transmitted in response to the movement of the flow indicator. The flow indicator is an inhalation valve, exhalation valve, or an axially movable actuator. A delivery device includes a holding chamber wrapped by a coil and at least one magnet disposed within the center of the coil and reciprocally movable to induce a current and store it in a supercapacitor coupled to a circuit and an electronic indicator. A respiratory delivery device featuring a flow indicator configured to send a first input signal, a metered dose inhaler communicating with a holding chamber, a lever to actuate the inhaler and having a sensor to send a second input signal, and a processor operative to receive these signals to generate an output signal.
A carrying case has first and second clam shell members hingedly connected along one side thereof and defines a interior cavity when in a closed position. At least a portion of an oral device is disposed between the first and second clam shell members with a support member engaging and supporting the oral device such that an intraoral bolus simulator is suspended in the interior cavity free of any engagement with the carrying case. The intraoral bolus simulator may include lubricated patches transformable from a first state, wherein the lubricated patches each comprise water soluble thermoplastic particles suspended in a silicone matrix, to a second state, wherein the water soluble thermoplastic particles are depleted from the silicone matrix. A method of stimulating an oral cavity includes depleting the water soluble thermoplastic particles from the silicone matrix, and presenting a rough surface to the user with the depleted lubricated patches.
A respiratory treatment device having an inlet configured to receive exhaled air into the device, an outlet configured to permit exhaled air to exit the device, a valve moveable in response to a threshold exhalation pressure at the inlet between a closed position where the flow of air from the inlet to the outlet is restricted, and an open exhalation position where the flow of air from the inlet to the outlet is less restricted, and a valve brace configured to support the valve, wherein a position of the valve brace relative to the valve is selectively adjustable to increase or decrease the threshold exhalation pressure.
A respiratory treatment device for the combined administration of respiratory muscle training ("RMT") and oscillating positive expiratory pressure ("OPEP") therapy, and administration of RMT using pressure threshold resistors and flow resistors with respiratory treatment devices, such as OPEP devices.
A patient respiratory interface for use in an aerosol delivery system is disclosed. The interface may provide a mechanism for introducing an aerosolized medicament to infants without the need for invasive intubation when treating issues in infants such as infant respiratory distress syndrome. The interface may include an outer body formed in the shape of a pacifier where the insertion portion of the pacifier may be hollow and have an opening to guide a catheter or other tubing that may be passed through a flange and the insertion portion of the interface. The catheter may be recessed from or extend slightly out of the tip of the insertion portion so that a flow of nebulized medicament may be delivered to the patient's oropharynx in aerosol form.
A pressure indicator for a respiratory treatment device, the pressure indicator including an instrument for measuring pressures, a conduit configured to transmit a pressure within the respiratory treatment device to the instrument, and a pressure stabilizer orifice positioned within the conduit.
A respiratory treatment device includes a housing enclosing a chamber, a chamber inlet configured to receive a flow of air into the chamber, a first chamber outlet configured to permit the flow of air to exit the chamber, and a second chamber outlet configured to permit the flow of air to exit the chamber. A vane mounted within the chamber is configured to rotate between a first position where the flow of air is directed to exit the chamber through the first chamber outlet, and a second position where the flow of air is directed to exit the chamber through the second chamber outlet. A blocking member disposed on the vane is moveable relative to the chamber inlet between a closed position where the flow of air through the chamber inlet is restricted, and an open position where the flow of air through the chamber inlet is less restricted.
TRUDELL MEDICAL INTERNATIONAL, A REGISTERED NAME OF AN ONTARIO PARTNERSHIP COMPRISED OF TRUDELL PARTNERSHIP HOLDINGS LIMITED, AN ONTARIO CORPORATION AND PACKARD MEDICAL SUPPLY CENTRE LTD., AN ONTARIO CORPORATION (Canada)
TRUDELL MEDICAL INTERNATIONAL, A REGISTERED NAME OF AN ONTARIO PARTNERSHIP COMPRISED OF TRUDELL PARTNERSHIP HOLDINGS LIMITED, AN ONTARIO CORPORATION AND PACKARD MEDICAL SUPPLY CENTRE LTD., AN ONTARIO CORPORATION (Canada)
TRUDELL MEDICAL INTERNATIONAL, a registered name of an Ontario partnership comprised of Trudell Partnership Holdings Limited, an Ontario corporation and Packard Medical Supply Centre Ltd., an Ontario corporation (Canada)
A respiratory treatment device having an inlet configured to receive exhaled air into the device and an outlet configured to permit exhaled air to exit the device. A blocking member is moveable between a closed position where the flow of air through the device is restricted, and an open position where the flow of air through the device is less restricted. A biasing member is configured to bias the blocking member toward the closed position, wherein a level of bias decreases as the blocking member moves from the closed position to the open position.
A metered dose inhaler ("MDI") applicator is disclosed that includes a carrier, a housing, an adjuster and a lever. The carrier defines an aperture configured to receive a boot of a MDI. The housing is configured to be assembled with the carrier and to move in a vertical direction within the MID applicator relative to the carrier. The adjuster is configured to move between a locked position and an unlocked position, wherein when the adjuster is in the locked position, the adjuster is configured to prevent the carrier and the housing from moving in one or more directions relative to one another. The lever is pivotally connected to the housing and is configured to transfer a force applied to the lever to a canister of the MDI and to actuate the MDI to dispense an aerosolized medicine.
The present invention relates generally to an oral device, or mouthpiece, for delivering a fluid to the mouth or oropharynx of a user. In one embodiment, the oral device includes an intraoral portion defining intraoral conduits and an extraoral portion. The extraoral portion defines at least one extraoral conduit in flow communication with the intraoral conduits. The extraoral portion is connectable to a fluid supply, wherein the intraoral portions and extraoral portion form a delivery conduit. The delivery conduit includes a one-way valve permitting one directional flow from the extraoral conduit to the intraoral conduits. A method of dispensing a fluid using the oral device is also provided.
A61F 5/00 - Orthopaedic methods or devices for non-surgical treatment of bones or jointsNursing devices
A61H 23/04 - Percussion or vibration massage, e.g. using supersonic vibrationSuction-vibration massageMassage with moving diaphragms with hydraulic or pneumatic drive
50.
VENTILATOR CIRCUIT, ADAPTER FOR USE IN VENTILATOR CIRCUIT AND METHODS FOR THE USE THEREOF
An adapter includes a housing having an inlet port defining a flow path and an outlet port. An interior wall has an inner surface defining an interior passageway communicating with the outlet port and an exterior surface defining an exterior passageway communicating with the inlet port. The interior wall defines a mouth communicating between the interior and the exterior passageways. The interior wall is positioned transverse to the flow path of the inlet port. A medicament delivery port opens into the mouth. A valve is moveable between a closed position, wherein the valve closes the medicament delivery port, and an open position, wherein the medicament delivery port is open. A ventilator circuit and method of delivering a medicament are also provided.
A delivery device includes a toroidal shaped housing defining an interior chamber and a central open space. The housing includes an input port communicating with the interior chamber and a delivery port positioned on an inner periphery of the housing. The delivery port is in fluid communication between the interior chamber and the central open space. The delivery port is spaced from the input port, which is adapted to receive an aerosolized medicament. In another aspect, a kit includes an outer ring-like housing component and a plurality of differently configured inner ring-like housing components mateable with the outer ring-like housing to form a holding chamber. A method of delivering an inhalable substance is also provided. A mask, including mounting and sealing portions is also provided, together with a method of manufacturing such a mask. Delivery devices include various alternative adapters to be used with a mask and a substance dispenser.
A breathing assistance apparatus includes an inner volumetric member pressurizable from a first pressure to a second pressure and an outer volumetric member surrounding at least a portion of the inner expandable volumetric member. The inner volumetric member pressurizes the outer volumetric member as the inner volumetric member is pressurized from the first pressure to the second pressure. In another embodiment, a breathing assistance apparatus includes exhalation and inhalation chambers with respective biasing members providing for the exhalation chamber to apply a pressure to the inhalation chamber and thereby provide assisted inhalation. Methods for assisting breathing are also provided.
A respiratory treatment device comprising at least one chamber, a chamber inlet configured to receive air into the at least one chamber, at least one chamber outlet configured tp permit air to exit the at least one chamber, and a flow path defined between the chamber inlet and the at least one chamber outlet. A restrictor member positioned in the flow path is moveable between a closed position, where a flow of air along the flow path is restricted, and an open position, where the flow of air along the flow path is less restricted. A vane in fluid communication with the flow path is operatively connected to the restrictor member and is configured to reciprocate between a first position and a second position in response to the flow of air along the flow path.
A nebulizer includes a housing having a chamber for holding an aerosol, an air outlet communicating with the chamber for permitting the aerosol to be withdrawn from the chamber, and a reservoir for holding a liquid to be aerosolized. The nebulizer also includes a liquid orifice located in the chamber, one or more liquid channels defined between the reservoir and the liquid orifice, the one or more liquid channels having a liquid volume, and a pressurized gas outlet located in the chamber adjacent to the liquid orifice. A baffle is located in the chamber and positioned relative to the pressurized gas outlet and the liquid outlet so as to divert pressurized gas from the pressurized gas outlet and over the liquid orifice. The baffle has a diverter surface area. The liquid volume is at least 80 mm3. The diverter surface area is less than 5.0 mm2.
An oral device includes an intraoral bolus simulator comprising an exterior surface and having an interior volume fillable with a fluid. An extraoral user interface extends from the bolus simulator, and can be used to locate or position the intraoral bolus simulator. In various embodiments, the fluid may be a gas or a liquid, or combinations thereof. In other embodiments, an oral device includes an extraoral handle, a shield connected to the handle, a tether extending from the shield, and a bolus simulator connected to the tether.
A61F 5/00 - Orthopaedic methods or devices for non-surgical treatment of bones or jointsNursing devices
A61J 7/00 - Devices for administering medicines orally, e.g. spoonsPill counting devicesArrangements for time indication or reminder for taking medicine
A61M 31/00 - Devices for introducing or retaining media, e.g. remedies, in cavities of the body
A breathing assistance apparatus includes an inner volumetric member pressurizable from a first pressure to a second pressure and an outer volumetric member surrounding at least a portion of the inner expandable volumetric member. The inner volumetric member pressurizes the outer volumetric member as the inner volumetric member is pressurized from the first pressure to the second pressure. In another embodiment, a breathing assistance apparatus includes exhalation and inhalation chambers with respective biasing members providing for the exhalation chamber to apply a pressure to the inhalation chamber and thereby provide assisted inhalation. Methods for assisting breathing are also provided.
A nasal insert includes a housing having a circumferential wall defining an interior passage. The wall has a longitudinal gap extending along a length thereof, with an outer peripheral dimension of the housing being adjustable by varying the gap. A valve is in communication with the interior passage and limits a fluid flow through the interior passage in at least one direction. In another embodiment, a nasal insert includes a user interface having a tubular housing defining an interior cavity open at opposite ends. An exterior surface of the housing is adapted to interface with a nasal vestibule of a user. A base is received in the interior cavity of the housing and includes an exit port. A cap is connected to the base and has an input port. A valve member is disposed in an interior passage defined by at least one of the cap and base, with the valve member being moveably received in the interior passage. Methods of using and assembling the nasal inserts also are provided.
A dose counter includes a housing having an indicator member rotatably mounted in the housing. A drive gear is associated with the indicator member. The drive gear and a flexible support member include interfacing indexing features, with at least a portion of the support member being moveable toward and away from the drive gear. In another aspect, a movement limiter is operably engaged with the indicator member to prevent any rotation of the indicator member in response to actuations occurring between a predetermined number of actuations greater than one. In another aspect, a drive member includes a pawl portion and a biasing portion. The biasing portion is engageable with indicator member and biases the pawl outwardly relative to the indicator member along the axial direction as the drive member is moved from a preassembled position to an assembled position. Medicament devices including containers of medicament, together with methods of use and assembly, are also provided.
A61J 7/04 - Arrangements for time indication or reminder for taking medicine, e.g. programmed dispensers
A61M 11/00 - Sprayers or atomisers specially adapted for therapeutic purposes
G06M 1/04 - Design features of general application for driving the stage of lowest order
G06M 1/22 - Design features of general application for visual indication of the result of count on counting mechanisms, e.g. by window with magnifying lens
59.
NASAL INSERT AND CANNULA AND METHODS FOR THE USE THEREOF
A nasal insert includes a housing having a circumferential wall defining an interior passage. The wall has a longitudinal gap extending along a length thereof, with an outer peripheral dimension of the housing being adjustable by varying the gap. A valve is in communication with the interior passage and limits a fluid flow through the interior passage in at least one direction. In another embodiment, a nasal insert includes a user interface having a tubular housing defining an interior cavity open at opposite ends. An exterior surface of the housing is adapted to interface with a nasal vestibule of a user. A base is received in the interior cavity of the housing and includes an exit port. A cap is connected to the base and has an input port. A valve member is disposed in an interior passage defined by at least one of the cap and base, with the valve member being moveably received in the interior passage. Methods of using and assembling the nasal inserts also are provided.
An aerosol delivery system is disclosed that is a single-use (disposable) continuous nebulizer system designed for use with mechanically ventilated patients to aerosolize medications for inhalation with a general purpose nebulizer, or for connection with devices usable in endoscopic procedures. The system separates the liquid reservoir from the nebulization process taking place either at the adapter hub, where it fits into an endotracheal tube (ETT), or a gas humidifier, where the aerosol may treat a gas used in an endoscopic procedure, with a multi-lumen tube configured to nebulize liquid and air at its distal end. The refillable liquid reservoir is mounted away from the immediate treatment zone, avoiding orientation issues associated with other types of nebulizers having a self-contained reservoir. The system can produce aerosols having a wide range of droplet sizes, depending upon central lumen diameter, with values of MMAD that range from 4 to 30 pm.
A61M 11/02 - Sprayers or atomisers specially adapted for therapeutic purposes operated by air pressure applied to the liquid to be sprayed or atomised
B05B 7/24 - Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
A respiratory treatment device comprising at least one chamber, a chamber inlet configured to receive exhaled air into the at least one chamber, at least one chamber outlet configured to permit exhaled air to exit the at least one chamber, and an exhalation flow path defined between the chamber inlet and the at least one chamber outlet. A restrictor member positioned in the exhalation flow path is moveable between a closed position, where a flow of exhaled air along the exhalation flow path is restricted, and an open position, where the flow of exhaled air along the exhalation flow path is less restricted. A vane in fluid communication with the exhalation flow path is operatively connected to the restrictor member and is configured to reciprocate between a first position and a second position in response to the flow of exhaled air along the exhalation flow path.
The present invention relates generally to an oral device, or mouthpiece, for delivering a fluid to the mouth or oropharynx of a user. In one embodiment, the oral device includes an intraoral portion, an extraoral portion, and an auxiliary support device that serves to stabilize the oral device. In various embodiments, the auxiliary support device may be configured with ear loops, a support band, a support frame and/or a support member. The intraoral portion generally includes at least one outlet port through which the fluid is delivered to the oral cavity or oropharynx. A method of dispensing a fluid using the oral device is also provided.
A portable air pulse delivery device includes a housing and an air compressor having a motor disposed in the housing. The motor is operable at speeds between 1200 and 4800 rpm. The air compressor includes an air inlet and an air outlet. An untethered power source is disposed in the housing and is operably connected to the motor. An intake filter is disposed in the housing and is in fluid communication with the air inlet of the air compressor. An outlet port is coupled to the air outlet of the air compressor and is in communication with an exterior of the housing. A mouthpiece includes an inlet coupled to the outlet port and an outlet having a gas exit port. The air compressor is operative to produce an average gas flow rate of between about 2-3 L/min at the gas exit port at a pulsation frequency of between about 20 Hz to 80 Hz. A method for delivering air pulses to a mouth of a user is also provided.
An oral appliance for administering a stimulus, such as a substance, to the mouth of a user includes a flexible tube having an inlet portion, a first curved portion forming an ear loop connected to the inlet portion, a second curved portion forming a lip bend connected to the first curved portion, and an outlet portion extending from the second curved portion. Alternatively, a mouthpiece for delivering a substance to the mouth of a user includes a housing having an inlet portion, a riser portion extending upwardly from the inlet portion and a curved outlet portion. A flexible tube is coupled to the housing. A method of delivering a substance to a predetermined location in a user's mouth includes disposing a flexible tube between a row of teeth and an interior surface of a cheek. The flexible tube has an exit port positioned in a rear portion of the user's mouth. No portion of the flexible tube is disposed between the upper and lower teeth of the user such that the upper and lower teeth can be closed against each other. The method further includes dispensing a substance through the exit port.
A61J 7/00 - Devices for administering medicines orally, e.g. spoonsPill counting devicesArrangements for time indication or reminder for taking medicine
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
A61F 5/00 - Orthopaedic methods or devices for non-surgical treatment of bones or jointsNursing devices
A61H 1/00 - Apparatus for passive exercisingVibrating apparatusChiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
A61N 1/18 - Applying electric currents by contact electrodes
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
65.
RESPIRATORY MUSCLE ENDURANCE TRAINING DEVICE AND METHOD FOR THE USE THEREOF
A respiratory muscle endurance training device (RMET) includes a chamber and a patient interface (53). In one implementation, one or both of a C02 sensor or a temperature sensor can be coupled to the chamber or patient interface to provide the user or caregiver with indicia about the C02 level in, or the temperature of, the chamber or patient interface, and/or the duration of use of the device. In another implementation, the RMET may have a fixed volume portion adjustable to contain a measured portion of a specific patient's inspiratory volume capacity. Methods of using the device are also provided.
Systems and methods for evaluating medication delivery from valved holding chambers (VHCs) with a facemask using a model face of a child or a model face of an infant are disclosed. Generally, the model face includes a base, an elastomer cast, an air pocket, and a mouth opening. The elastomer cast is positioned on at least a portion of a top of the base. The elastomer simulates soft tissues in a face and defiens at least a nose, a chin, and a mouth sized to simulate a nose, a chin, and a mouth of a child. The air pocket is positioned between the base and the elastomer case below at least the nose, the chin, and the mouth of the elastomer cast. The mouth opening defines a passageway through the base, the air pocket, and the mouth of the elastomer cast.
Ventilator circuit aerosol delivery systems used to administer medication to a patient are disclosed. In one implementation, a metered dose inhaler ('MDI') ventilator assembly may include a housing that defines an interior space, an inhalation port that defines an inhalation passageway in communication with the interior space, an exhalation port that defines an exhalation passageway in communication with the interior space, a patient port that defines a patient passageway in communication with the interior space, and a MDI receptacle positioned on the housing and in communication with the interior space. The MDI receptacle is operative to receive a MDI container and dispense an aerosolized medication within the MID container into the interior space so that during inhalation, an inhalation flow including the aerosolized medication may flow through the inhalation port, the interior space, and the patient port. Conversely, during exhalation, gases, moisture, condensation, and/or mucus expelled from the patient flow through the patient port, the interior space, and the exhalation port.
A respiratory muscle endurance training device (RMET) includes a chamber and a patient interface. In one implementation, one or both of a CO2 sensor or a temperature sensor can be coupled to the chamber or patient interface to provide the user or caregiver with indicia about the CO2 level in, or the temperature of, the chamber or patient interface, and/or the duration of use of the device. In another implementation, the RMET may have a fixed volume portion adjustable to contain a measured portion of a specific patient's inspiratory volume capacity. Methods of using the device are also provided.
A dispenser includes a dispenser housing, an indicating device connected to the dispenser housing and a container removably engaged with the dispenser housing. The container and the dispenser housing remain connected as the container is moved between an engaged position and a disengaged position relative to the dispenser housing. The dispenser housing includes an upper portion pivotally connected to a lower portion.
A peak flow meter is described with a body having a sample channel and at least one bypass channel. One of at least two flow range scales may be selected using a flow range selector to adjust the sensitivity of the peak flow meter. A flow range selection indicator provides visual reference as to which flow range scale has been selected. A peak flow calculator used in cooperation with zone indicators on the peak flow meter permits a user to customize the peak flow meter for that user's predicted personal best exhalation range.
A peak flow meter is described with a body having a sample channel and at least one bypass channel. One of at least two flow range scales may be selected using a flow range selector to adjust the sensitivity of the peak flow meter. A flow range selection indicator provides visual reference as to which flow range scale has been selected. A peak flow calculator used in cooperation with zone indicators on the peak flow meter permits a user to customize the peak flow meter for that user's predicted personal best exhalation range.
Trudell Medical International, Trudell Partnership Holdings Limited (an Ontario Corporation) and Packard Medical Supply Centre Ltd. (an Ontario Corporation) (Canada)